scholarly journals Synthesizing environmentally friendly non-silicone oxygen bleaching stabilizer for linen yarn using oligomeric acrylic acid

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Liu ◽  
Chun Lv

AbstractUsing potassium peroxodisulfate as an initiator and acrylic acid as a monomer, an acrylic acid oligomer was synthesized and then compounded with magnesium salt to form a non-silicone oxygen bleaching stabilizer. By investigating the effects of reaction temperature, reaction time, initiator concentration, monomer concentration, and magnesium salt dosage on product performance, the effect of stabilizers on linen yarn bleaching was analyzed. The synthetic conditions of oxygen bleaching stabilizer were determined by orthogonal test method, namely, acrylic acid monomer concentration 25%, initiator dosage 5%, oligomeric acrylic acid and magnesium salt compound ratio 5:1, reaction temperature 65 °C, reaction time 4 h. At this time, the chelated iron value of the product was as high as 239.314 mg/g, and the chelated calcium value also reached 145.000 mg/g. The dosage of the synthesized stabilizer were determined to be 4 g/L through indicators such as the decomposition rate of hydrogen peroxide and whiteness. The results showed that the environmentally friendly non-silicone oxygen bleaching stabilizer not only had a good ability to inhibit the decomposition of hydrogen peroxide, but also provided bleached linen yarn with a superior degree of whiteness and less metal ion residue, which can effectively solve the “silicon scale” problem and improve the quality of the pre-treatmented products.

2011 ◽  
Vol 197-198 ◽  
pp. 899-905 ◽  
Author(s):  
Chun Xiang Lin ◽  
Ming Hua Liu ◽  
Huai Yu Zhan

The spherical cellulose adsorbent was prepared by grafting acrylic acid onto the spherical cellulose beads prepared by NMMO method. The effecting factors, e.g., monomer concentration, initiator concentration, reaction temperature and reaction time were optimized by the orthogonal and signal-factor experiments and the structure of the adsorbent was characterized by FTIR and SEM. The graft mechanism was also discussed. Moreover, the spherical cellulose adsorbents were shown to behave as good sorbents for basic amino acids L-Arg, L-Lys and L-His.


2021 ◽  
Author(s):  
Jie Liu ◽  
Wenqi Jiang ◽  
Ling Sun ◽  
Chun Lv

Abstract Alkali-oxygen one-bath scouring and bleaching process of the flax roving was studied by using a new type of synthesized non-silicon oxygen bleaching stabilizer Poly(acrylic acid) magnesium instead of sodium silicate. Based on the analysis of the effects of single factors such as sodium hydroxide concentration, hydrogen peroxide concentration, temperature, time and the amount of the synthesized non-silicon oxygen bleaching stabilizer poly(acrylic acid) magnesium salt on the performance of the bleached flax roving, including the whiteness, the breaking tenacity, the capillary effect and the weight loss ratio. The optimal process for the application of the stabilizer was determined by orthogonal test, namely, hydrogen peroxide concentration 8.5 g/L, sodium hydroxide concentration 5 g/L, sodium bisulfite 3 g/L, sodium carbonate 3 g/L, the synthesized non-silicon oxygen bleaching stabilizer poly(acrylic acid) magnesium 5.5 g/L, scoured and bleached at 90 ℃ for 60 min, and the bath ratio was 25:1. Compared with the traditional oxygen bleaching stabilizer sodium silicate, it not only has good ability to inhibit the rapid decomposition of hydrogen peroxide, but also has the advantages of higher whiteness, higher capillary effect, good feel and breaking tenacity, and can effectively solve the "silicon scale" problem and improve the quality of flax products.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Hang Zhang ◽  
Zhipeng Ma ◽  
Yunpeng Min ◽  
Huiru Wang ◽  
Ru Zhang ◽  
...  

Several kinds of composite materials with phosphotungstic acid (PTA) as the catalyst were prepared with activated carbon as support, and their structures were characterized. According to the Box–Behnken central combination principle, the mathematical model of the heterogeneous system is established. Based on the single-factor experiments, the reaction temperature, the reaction time, the amount of hydrogen peroxide and the loading capacity of PTA were selected as the influencing factors to study the catalyzed oxidation of hydrogen peroxide and degradation of high molecular weight chitosan. The results of IR showed that the catalyst had a Keggin structure. The results of the mercury intrusion test showed that the pore structure of the supported PTA catalyst did not change significantly, and with the increase of PTA loading, the porosity and pore volume decreased regularly, which indicated that PTA molecules had been absorbed and filled into the pore of activated carbon. The results of Response Surface Design (RSD) showed that the optimum reaction conditions of supported PTA catalysts for oxidative degradation of high molecular weight chitosan by hydrogen peroxide were as follows: reaction temperature was 70 ℃, reaction time was 3.0 h, the ratio of hydrogen peroxide to chitosan was 2.4 and the catalyst loading was 30%. Under these conditions, the yield and molecular weight of water-soluble chitosan were 62.8% and 1290 Da, respectively. The supported PTA catalyst maintained high catalytic activity after three reuses, which indicated that the supported PTA catalyst had excellent catalytic activity and stable performance compared with the PTA catalyst.


2014 ◽  
Vol 884-885 ◽  
pp. 125-128
Author(s):  
Wen Qiang Yang ◽  
Juan An ◽  
Jian Guo Yin ◽  
Xiao Li Yuan ◽  
Wen Tang Xia

Removal of manganese (II) ions from wastewater by H2O2as oxidant was studied. Effects of reaction temperature, hydrogen peroxide concentration, reaction time and calcium oxide concen-tration on the manganese removal were investigated. The results indicated that the removal rate of manganese exceeded 99.9% and the Mn (II) ions concentration of treated wastewater was lower than 0.1 mg·L-1under the conditions of reaction temperature 55 °C, concentration of H2O20.1 mL·L-1, reaction time 70 min, concentration of CaO 0.25 g·L-1.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Teena Sehgal ◽  
Sunita Rattan

Grafted membranes were prepared through chemical graft copolymerization of methyl methacrylate (MMA) onto isotactic polypropylene film (IPP). The IPP films were grafted with MMA molecules resulting in IPP-g-MMA grafts using benzoyl peroxide as an initiator in an inert nitrogen atmosphere. Using this method, the degree of grafting and morphology could be controlled through the variation of reaction parameters such as initiator concentration, monomer concentration, reaction time, and the reaction temperature. Optimum conditions pertaining to maximum percentage of grafting (%G) were evaluated as a function of these parameters. Maximum percentage of grafting (50%) was obtained at  M, % V/V, and [Reaction Temperature] = in a [Reaction time] of 120 minutes. IPP-g-MMA films were investigated for their swelling behavior. Water-swelling analysis of IPP-g-MMA was carried out as a function of different percentage of grafting, temperatures, and time. Maximum swelling percentage of IPP-g-MMA (92%) was observed in 8 hours at . The evidence of grafting was carried out by Fourier transform spectroscopy (FTIR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) before and after grafting, respectively. The swelling pattern was characterized by two distinct stages, an initial diffusion-controlled fast swelling, followed by a subsequent slower process controlled by the relaxation of polymer fragments. Swelling chrematistics of IPP-g-MMA make it a potentially useful material.


2013 ◽  
Vol 316-317 ◽  
pp. 942-945
Author(s):  
Qing He Gao ◽  
Yi Can Wang ◽  
Zhi Feng Hou ◽  
Hui Juan Qian ◽  
Yuan Zhang ◽  
...  

The yield of epoxysuccinic acid was obtained by determining the content of unreacted maleic anhydride and tartaric acid as a by-product in synthesis system. This method could calculate the yield of epoxysuccinic acid precisely and overcome the disadvantage of obtaining inpure product by recrystallization method. Epoxysuccinic Acid was synthesized using maleic anhydride as raw material, hydrogen peroxide as oxidizer and tungstate as catalyst. The effects of reaction temperature, reaction time, ratio of materials, dosage of oxidizer and catalyst on epoxidation and hydrolysis reaction was investigated. The results showed that the yield of epoxysuccinic acid was 88% when the reaction conditions were as follows: reaction temperature 65°C, reaction time 1.5h, catalyst dosage 3%(based on mass of maleic anhydride), molar ratio of sodium hydrate to maleic anhydride 2:1, mass ratio of hydrogen peroxide to maleic anhydride 1:1.


2013 ◽  
Vol 804 ◽  
pp. 94-97
Author(s):  
Chun Wei Shi ◽  
Xiao Yan Zhang ◽  
Shan Lin Zhao ◽  
Ping Chen ◽  
Yu Ting Bai

Oleic acid was oxidized to azelaic acid by ozone and hydrogen peroxide as an oxidant jointly in this paper. The effect of major factors, such as the volume and concentration of hydrogen peroxide, the volume and concentration of ozone. The results show that the yield of azelaic acid was up to 71 %, when the oxidation was taken under the following condition: oleic acid 20g, phosphotungstic acid hydrate 0.6g , 30% hydrogen peroxide solution 60ml, reaction temperature 70°C, reaction time 8h.


2019 ◽  
Vol 79 (2) ◽  
pp. 366-374 ◽  
Author(s):  
Hao Peng ◽  
Jing Guo ◽  
Gang Li ◽  
Qinzhe Cheng ◽  
Yuju Zhou ◽  
...  

Abstract Many technologies have been proposed to oxidize chromium, such as roasting-water leaching technology and hydrometallurgical methods such as pressure oxidative leaching coupled with oxygen, ozone, permanganate and ferrate, but the problems associated with the high temperature, low overall resource utilization efficiency, high energy consumption, and the environmental pollution, still remain unsolved. This paper focuses on the oxidation process of chromium (III) with hydrogen peroxide (H2O2) in an alkaline medium. The effect of parameters including dosage of H2O2, dosage of NaOH, reaction time, reaction temperature and stirring rate on the oxidation efficiency of chromium were investigated. The oxidation efficiency was significantly affected by the dosage of H2O2 and NaOH, reaction time and reaction temperature took second place; last was the stirring rate. Oxidation efficiency was nearly 100% under the optimal conditions: volume ratio of H2O2 to mass of Cr2(SO4)3 of 2.4 mL/g, mass ratio of NaOH to Cr2(SO4)3 0.6 g/g, reaction time of 90 min, reaction temperature of 90 °C and stirring rate of 500 rpm.


Sign in / Sign up

Export Citation Format

Share Document