Physics and kinetics of alkaline hydrolysis of cationic dyeable poly(ethylene terephthalate) (CDPET) and polyethylene glycol (PEG)–modified CDPET polymers: Effects of dimethyl 5-sulfoisophthalate sodium salt/PEG content and the number-average molecular weight of the PEG

2005 ◽  
Vol 98 (2) ◽  
pp. 550-556 ◽  
Author(s):  
Kai-Jen Hsiao ◽  
Jen-Liang Kuo ◽  
Jing-Wen Tang ◽  
Lien-Tai Chen
1997 ◽  
Vol 67 (10) ◽  
pp. 760-766 ◽  
Author(s):  
M.-C. Yang ◽  
H.-Y. Tsai

Poly(ethylene terephthalate) fabrics are treated with sodium hydroxide using ethylene glycol or glycerin as the solvent. Compared with conventional aqueous alkaline hydrolysis, the degradation rate in ethylene glycol increases tenfold. The kinetics of the alkaline-ethylene glycol treatment show that the weight loss is linear with respect to time. The moisture regain rate and tensile properties of the treated fabrics are measured; other tests include scanning electron microscopy and dyeing properties. The results show that the properties of the treated fabrics do not depend significantly on the solvent; therefore, using ethylene glycol can greatly shorten the treatment time to achieve results similar to those with the conventional aqueous system.


1997 ◽  
Vol 67 (9) ◽  
pp. 684-694 ◽  
Author(s):  
J. Radhakrishnan ◽  
Takeshi Kikutani ◽  
Norimasa Okui

Sheath-core bicomponent spinning of high molecular weight poly (ethylene terephthalate) (hmpet, IV = 1.02 dl/g) and low molecular weight pet (lmpet, IV = 0.65 dl/g) is done at a take-up velocity range of 1 to 7 km/min. The structures of the individual components in the as-spun bicomponent fibers are characterized. Orientation and orientation-induced crystallization of the hmpet component are enhanced, while those of the lmpet component are suppressed in comparison to corresponding single component spinning. Numerical simulation with the Newtonian model shows that elongational stress in the hmpet component is enhanced and that of the lmpet decreases during high-speed bicomponent spinning. The difference in elongational viscosity is the main factor influencing the mutual interaction between hmpet and lmpet, which in turn affect spinline dynamics, solidification temperature, and structural development in high-speed bicomponent spinning. Simulation with an upper-convected Maxwell model shows that considerable stress relaxation can occur in the lmpet component if the hmpet component solidifies before lmpet. A mechanism for structural development is also proposed, based on the simulation results and structural characterization data.


Sign in / Sign up

Export Citation Format

Share Document