Effect of the graft yield of maleic anhydride on the rheological behaviors, mechanical properties, thermal properties, and free volumes of maleic anhydride grafted high-density polyethylene

2007 ◽  
Vol 107 (2) ◽  
pp. 985-992 ◽  
Author(s):  
Zhe Chen ◽  
Pengfei Fang ◽  
Hongmei Wang ◽  
Shaojie Wang
2011 ◽  
Vol 279 ◽  
pp. 115-119 ◽  
Author(s):  
Jing Long Gao ◽  
Yan Hui Liu ◽  
Shou Dong Wei

High-density polyethylene (HDPE)/silica composites with different silicon dioxide fraction were prepared by the melting blend method. The effects of silicon dioxide content on the thermal properties and mechanical properties were mainly investigated. The results show that the thermal degradation of the composites shifts towards higher temperatures as the concentration of silicon dioxide is increased. With increasing silica dioxide content, the tension yield strength of HDPE/silicon composites increased, but its breaking elongation decreased. When silicon dioxide content is 5 %, the tension yield strength and its breaking elongation are 29.33 MPa and 102.82 %, respectively.


2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


Author(s):  
Innocent Ochiagha Eze ◽  
Isaac O. Igwe ◽  
Okoro Ogbobe ◽  
Henry C. Obasi ◽  
U. Luvia Ezeamaku ◽  
...  

The effects of compatibilizer (maleic anhydride-graft-polyethylene) on the mechanical properties of pineapple leaf powder (PALP) filled high density polyethylene (HDPE) composites were studied. HDPE and PALP composites in the presence, or absence of the compatibilizer, maleic anhydride -graft- polyethylene (MA-g-PE) were prepared by injection moulding technique. The filler (PALP) contents investigated were 2, 4, 6, 8, and 10 wt%, while the MA-g-PE content was 3 wt% of the filler content for each formulation. The result of the mechanical tests carried out on the HDPE/PALP composites showed that the tensile strength, tensile modulus, abrasion resistance, and hardness of the composites increased as the filler content increases both in the presence, or absence of the compatibilizer (MA-g-PE) for all the filler contents investigated, while the elongation at break (EB) for PALP/HDPE composites was found to decrease as the filler content increases both in the presence, or absence of MA-g-PE for all the filler contents investigated. It was also observed that PALP/HDPE composites in the presence of MA-g-PE exhibited better mechanical properties than that of PALP/HDPE composites in the absence of MA-g-PE for all the filler contents investigated. The present study has proved that the mechanical properties of PALP/HDPE composites can be enhanced by incorporating a compatibilizer (MA-g-PE) into their formulations. This is so because the chemical composition of the compatibilizer (MA-g-PE) allows it to react with the fibre surface, thereby forming a bridge of chemical bonds between the fibre and matrix.


2015 ◽  
Vol 121 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Eleftheria Roumeli ◽  
Zoe Terzopoulou ◽  
Eleni Pavlidou ◽  
Konstantinos Chrissafis ◽  
Electra Papadopoulou ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 57-62
Author(s):  
Wanikorn Buakaew ◽  
Ruksakulpiwat Yupaporn ◽  
Nitinat Suppakarn ◽  
Wimonlak Sutapun

In this research work, the effect of compatibilizers on mechanical and thermal properties of ESP/HDPE composites was investigated. High density polyethylene grafted with maleic anhydride (HDPE-g-MA) and ethylene propylene rubber grafted with maleic anhydride (EPR-g-MA) were used to compatibilize the ESP/HDPE composites. The ESP/HDPE composite with and without the compatibilizes was prepared at 20 wt.% ESP. The volume average particle size of ESP was 20.35 µm. The compatibilized HDPE composites were prepared at 2, 5, 8 and 10 wt.% of HDPE-g-MA and at 2, 5, 8 and 10 wt.% of EPR-g-MA, as well. It was found that ultimate stress, yield strength, and elongation at break of the ESP/HDPE composites prepared with HDPE-g-MA increased with increasing HDPE-g-MA content. In addition, Young’s modulus was maximum at 8 wt.% HDPE-g-MA. The composites filled with HDPE-g-MA had improved impact strength with increasing HDPE-g-MA content. On the other hand, the composites with EPR-g-MA showed a decrease in tensile properties and impact strength when increasing EPR-g-MA content. The impact strength of the HDPE composites compatibilized with EPR-g-MA decreased with increasing EPR-g-MA content. In addition, degree of crystallinity of the composites with EPR-g-MA was higher than that of the composite with HDPE-g-MA. Furthermore, compatibilizing ESP/HDPE composites with either HDPE-g-MA or EPR-g-MA did not influence HDPE and ESP decomposition temperatures, HDPE melting temperature and HDPE crystallization temperature.


Sign in / Sign up

Export Citation Format

Share Document