Influence of matrix viscosity on the dynamic mechanical performance of magnetorheological elastomers

2019 ◽  
Vol 137 (13) ◽  
pp. 48492
Author(s):  
Nur Haslina Nasirah Abdul Hadi ◽  
Hanafi Ismail ◽  
Muhammad Khalil Abdullah ◽  
Raa Khimi Shuib
Author(s):  
Xia Zhengbing ◽  
Zhang Kefeng ◽  
Deng Yanfeng ◽  
Ge Fuwen

Recently, engineering blasting is widely applied in projects such as rock mineral mining, construction of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB) to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future.


2017 ◽  
Vol 17 (8) ◽  
pp. 04017020 ◽  
Author(s):  
Ming Li ◽  
Xianbiao Mao ◽  
Lili Cao ◽  
Hai Pu ◽  
Aihong Lu

2018 ◽  
Vol 37 (7) ◽  
pp. 429-440 ◽  
Author(s):  
Muhammad Umair ◽  
Syed Talha Ali Hamdani ◽  
Muhammad Ayub Asghar ◽  
Tanveer Hussain ◽  
Mehmet Karahan ◽  
...  

Three-dimensional multilayer woven composites are mostly used in high-performance applications due to their excellent out-of-plane mechanical performance. The current research presents an experimental investigation on the mechanical behavior of three-dimensional orthogonal layer-to-layer interlock composites. The glass filament yarn and carbon tows were used as reinforcement in warp and weft directions respectively, whereas epoxy was used as a resin for composite fabrication. Three different types of orthogonal layer to layer interlock namely warp, weft, and bi-directional interlock composites were fabricated and the effect of interlocking pattern on their mechanical performance was evaluated. The evaluation of the mechanical performance was made on the basis of tensile strength, impact strength, flexural strength, and dynamic mechanical analysis of composites in warp and weft directions. It was found that warp and weft interlock composites showed better tensile behavior as compared to bi-directional interlock composite both in the warp and weft directions, due to the presence of less crimp as compared to the bi-directional interlock composite. However, the bi-directional interlock composite exhibited considerably superior impact strength and three-point bending strength as compared to the other structures under investigation. These superior properties of bi-directional interlock composites were achieved by interlocking points in warp and weft directions simultaneously, creating a more compact and isotropic structure. Tan delta values of dynamic mechanical analysis results showed that bi-directional interlock composite displayed the highest capacity of energy dissipation in the warp and weft directions while weft interlock structures displayed highest storage and loss moduli in the warp direction.


Author(s):  
Rui Li ◽  
L. Z. Sun

Magnetorheological elastomers (MREs) are adaptive composite materials in the sense that their mechanical properties are tailored by the applied magnetic field. In this paper we developed both isotropic and anisotropic silicone-rubber-based MREs. We examined the zero-magnetic-field dynamic stiffness and damping along with the magnetic field induced changes (the magnetorheological (MR) effect) for the viscoelastic properties of the MREs by conducting both compression and shear investigations. While the anisotropic MREs exhibited substantial magnetic-field-dependent viscoelastic properties at a medium magnetic field, the isotropic ones showed a negligible MR effect. The magnetic filler structure and concentration, loading frequency, and dynamic strain amplitude were all confirmed to play significant roles in the dynamic mechanical performance of the MREs.


Sign in / Sign up

Export Citation Format

Share Document