Characteristics of microcrystalline cellulose from nata de coco: Hydrochloric acid versus maleic acid hydrolysis

2021 ◽  
pp. 51576
Author(s):  
Bambang Nurhadi ◽  
Angeline Angeline ◽  
Nandi Sukri ◽  
Nanang Masruchin ◽  
Heni Radiani Arifin ◽  
...  
1980 ◽  
Vol 44 (1) ◽  
pp. 375-394
Author(s):  
N.N. Bobyleva ◽  
B.N. Kudrjavtsev ◽  
I.B. Raikov

The DNA content of isolated micronuclei, differentiating macronuclei (macronuclear Anlagen), and adult macronuclei of Loxodes magnus was measured cytofluorimetrically in preparations stained with a Schiff-type reagent, auramine-SO2, following hydrochloric acid hydrolysis. The DNA content of the youngest macronuclear Anlagen proved to be the same as that of telophasic micronuclei (2 c). The Anlagen thus differentiate from micronuclei which are still in G1. The quantity of DNA in the macronuclear Anlagen thereafter rises to the 4-c level, simultaneously with DNA replication in the micronuclei which immediately follows mitosis. In non-dividing animals most micronuclei are already in G2. Adult macronuclei here contain on average 1.5 times more DNA than the micronuclei; their DNA content is about 5–6 c (in some individual nuclei, up to 10 c). These data are consistent with autoradiographic evidence indicating a weak DNA synthesis in the macronuclei of Loxodes and make likely the existence of partial DNA replication (e.g. gene amplification) in the macronuclei. The DNA content of adult macronuclei isolated from dividing animals proved to be significantly smaller than that of macronuclei isolated from non-dividing specimens of the same clone. In 3 clones studied, the former value amounted on average to 71–79, 78 and 95% of the latter, respectively. This drop of DNA content cannot be explained by ‘dilution’ of the old macronuclei with newly formed ones. The quantity of DNA in adult macronuclei thus seems to undergo cyclical changes correlated with cytokinesis, despite the fact that, in Loxodes magnus, the macronuclei themselves never divide and are simply segregated at every cell division. The macronuclei of Loxodes can be termed paradiploid or hyperdiploid.


ALCHEMY ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Dewi Yuliani ◽  
Khoirul Achmad Julianto ◽  
Akyunul Jannah

<p class="BodyAbstract">Rice bran is one among many agricultural by-products containing ~50-60 wt.% of carbohydrate. The carbohydrate is a prominent sugar source for bioethanol production. The objective of this research was to study bioethanol production from rice bran by acid and enzymatic treatment. The variations of acid used were dilute hydrochloric acid and sulphuric acid, while variations of enzyme used were amylolytic and cellulolytic enzyme. Ethanol production of acid-hydrolyzed rice bran was 24.95±1.61% (v/v) by hydrochloric acid and 29.57±2.04% (v/v) by sulphuric acid. Ethanol produced by enzymatic hydrolysis was quite low i.e. 6.7±0.04%, and 8.86±0.29% (v/v) for amylolytic and cellulolytic hydrolysate, respectively.</p><p class="BodyAbstract"> </p><p>Keywords: Bioethanol, rice bran, acid hydrolysis, enzymatic hydrolysis</p>


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Steven . ◽  
Mardiyati . ◽  
R. Suratman

Rattan is one of natural resources of Indonesia which contains 30%-40% cellulose. Its high cellulose contents makes it very potential as a source of microcrystalline cellulose (MCC). In this research, manau rattan was characterized by using the Chesson methods. Microcrystalline cellulose was prepared by using two methods, i.e. alkalization and acid hydrolysis. Alkalization was performed by soaking manau rattan powder into sodium hydroxide 17,5% for 8 hours. Acid hydrolysis was prepared by using sulfuric acid at a concentration of 0.1 M; 0.3 M; and 0.5 M for 4, 6, 8, and 10 hours. The crystallinity of MCC was quantitatively measured by XRD and qualitatively measured by using FTIR. In this research, we have successfully made microcrystalline cellulose from manau rattan. The highest crystallinity MCC of 72.42% was obtained from acid hydrolysis with 0.5 M for 10 hours. The crystallinity of the MCC product increases with concentration and hydrolysis time.Keywords: acid hydrolisis, alkalization, cellulose, manau rattan, MCCABSTRAKRotan merupakan salah satu kekayaan hayati Indonesia yang mengisi sepuluh persen hutan di Indonesia yang memiliki kadar selulosa mencapai 30-40%. Kadar selulosa yang cukup tinggi membuat rotan sangat berpotensi untuk dimanfaatkan sebagai bahan baku mikrokristalin selulosa (MCC). Rotan manau dikarakterisasi menggunakan metode Chesson. Pembuatan mikrokristalin selulosa terdiri atas dua tahap, yaitu alkalisasi dan hidrolisi asam. Tahap alkalisasi dilakukan dengan merendam rotan di dalam larutan NaOH 17,5% selama 8 jam. Tahap hidrolisis asam dilakukan dengan menggunakan asam sulfat pada berbagai konsentrasi, yakni 0,1; 0,3 dan 0,5 M selama 4, 6, 8, dan 10 jam. Kristalinitas dari MCC yang dihasilkan diukur dengan menggunakan XRD. Untuk mengetahui komposisi kimia serta kristalinitas MCC secara kualitatif, telah dilakukan karakterisasi dengan menggunakan FTIR. Pada penelitian ini, telah berhasil dibuat MCC yang bersumber dari rotan manau. Kristalinitas MCC tertinggi dihasilkan dengan perlakuan hidrolisis asam dengan konsentrasi 0,5 M selama 10 jam, yaitu sebesar 72,42%. Seiring dengan peningkatan konsentrasi serta waktu hidrolisis, kristalinitas MCC yang dihasilkan semakin tinggi.Kata kunci: alkalisasi, hidrolisis asam, selulosa, MCC, rotan manau


REAKTOR ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 81-88
Author(s):  
Euis Hermiati ◽  
Maulida Oktaviani ◽  
Riksfardini Annisa Ermawar ◽  
Raden Permana Budi Laksana ◽  
Lutfi Nia Kholida ◽  
...  

Sugarcane trash contains significant amount of xylan that could be hydrolysed to xylose. The xylose could be further fermented to produce xylitol, a sugar alcohol that has low calories and does not cause carries of teeth. In this study we optimized the production of xylose from sugarcane trash by microwave-assisted maleic acid hydrolysis using response surface methodology (RSM). The factors optimized were acid concentration, time, and temperature. The xylose yield based on the weight of initial biomass was determined and it served as a response variable. Results show that acid concentration and interaction between time and temperature had significant effect on xylose yield. The quadratic regression model generated from the optimization was fit and can be used to predict the xylose yield after hydrolysis with various combinations of acid concentration, time, and temperature. The optimum condition for xylose production from sugarcane trash was using maleic acid of 1.52%, and heating at 176 °C for 6.8 min. At this condition the yield of xylose was 24.3% per initial biomass or 0.243 g/ g biomass.Keywords: maleic acid; microwave heating; response surface methodology; sugarcane trash, xylose


RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17151-17158 ◽  
Author(s):  
Qionglin Luo ◽  
Shunqin Zeng ◽  
You Shu ◽  
Zaihui Fu ◽  
Hongran Zhao ◽  
...  

A polystyrene-hollow sphere catalyst was prepared by treating polystyrene-encapsulated calcium carbonate particles with concentrated hydrochloric acid.


1953 ◽  
Vol 6 (2) ◽  
pp. 156 ◽  
Author(s):  
JWT Merewether

Ethanol lignin-A from the ethanolysis of Eucalyptus regnans P. Muell. has been hydrolysed with dilute hydrochloric acid with the object of ascertaining whether the combined ethoxyl is present as an acetal or as ether. Hydrolysis with 12 per cent. hydrochloric acid was found to split off one ethoxyl group, while hydrolysis with 20 per cent. acid brought about complete de-ethylation. The de-ethylated ethanol lignin-A contained one carbonyl group less and two hydroxyl groups more than the original ethanol lignin-A. These results lend no support to the hypothesis that alcohol lignins are acetals, and favour the theory that the combined alkoxyl is probably present as ether.


1982 ◽  
Vol 4 (1) ◽  
pp. 12-15 ◽  
Author(s):  
M. M. A. de Bruyne ◽  
A. Sinnema ◽  
A. M. A. Verweij

Sign in / Sign up

Export Citation Format

Share Document