high cellulose
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 39)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 15 (2) ◽  
pp. 194
Author(s):  
RIZKA NURLAILA

Rice straw is a waste from rice plants that contains 37.71% cellulose, 21.99% hemicellulose, and 16.62% lignin. High cellulose content in rice straw can be used as raw material for the manufacture of Carboxymethyl Cellulose (CMC). CMC is a cellulose derivative widely used in food, pharmaceutical, detergent, textile and cosmetic products industries as a thickener, stabilizer of emulsions, or suspensions and bonding. This study aims to process rice straw waste into CMC with variations in sodium monochloroacetate of 5,6,7,8 and 9 grams. The method used in this research is by synthesis using 15% NaOH solvent, with a reaction time of 3.5 hours and 5 grams of rice straw. The results showed that the best CMC was obtained at a concentration of 9 grams of sodium monochloroacete with a yield characterization of 94%, pH 6, water content of 13.39%, degree of substitution (Ds) of 0.80, and viscosity of 1.265 cP.


2021 ◽  
Vol 1 (10) ◽  
pp. 389-393
Author(s):  
Sari Rizky Amelia ◽  
Muhammad Yerizam ◽  
Erwana Dewi

Tandan kosong kelapa sawit (TKKS) merupakan limbah padatan yang dihasilkan dari proses pembuatan minyak kelapa sawit yang selulosa (45,95%), kadar abu (1,23%), hemiselulosa (22,84%), kadar air (3,74%) dan lignin (16,49%). Pelepah pisang mempunyai kandungan selulosa yang tinggi akan tetapi belum dimanfaatkan secara optimal yang memiliki kandungan densitas ( 1,35 gr/cm3), selulosa (63 -64 %), hemiselulosa (20 %), lignin (5%), kekuatan Tarik rata-rata (600 Mpa), modulus tarik rata-rata (17,85 Gpa), pertambahan panjang (3,36 %), diameter serat (5,8 µm), serta panjang serat (30,9240 cm). Namun bahan-bahan ini mempunyai karakteristik dan sifat fisika kimia yang berbeda-beda. Karakteristik menjadikan perlunya analisa agar menghasilkan pulp yang diinginkan berada pada kondisi optimal. Beberapa parameter yang diukur di antaranya, konsentrasi larutan NaOH dengan variasi 7% dan 9%, dengan variasi bahan baku 40-60% serta waktu pemasakan dengan variasi waktu 75, 90, 105, 120 dan 135 menit. Sehingga pada penelitian ini didapatkan kondisi optimumnya yakni pada rasio 40:60, dengan konsentrasi 9% dan waktu pemasakan selama 120 menit didapatkan nilai kadar lignin 11,21% dan kadar selulosa 68,94%. Oil palm empty fruit bunches or TKKS are solid wastes produced from the process of making palm oil which are cellulose (45.95%), ash content (1.23%), hemicellulose (22.84%), water content (3.74 %) and lignin (16.49%). Banana midrib has a high cellulose content but has not been used optimally which contains density (1.35 g/cm3), cellulose (63 -64 %), hemicellulose (20 %), lignin (5%), average tensile strength. average (600 Mpa), average tensile modulus (17.85 Gpa), increase in length (3.36%), fiber diameter (5.8 m), and fiber length (30,9240 cm). However, these materials have different physicochemical characteristics and properties. The characteristics make the need for analysis in order to produce the desired pulp in optimal conditions. Several parameters were measured including the concentration of NaOH solution with variations of 7% and 9%, with variations of raw materials 40-60% and cooking time with variations of 75, 90, 105, 120 and 135 minutes. So that in this study the optimum conditions were obtained, namely at a ratio of 40:60, with a concentration of 9% and cooking time for 120 minutes, the lignin content was 11.21% and the cellulose content was 68.94%.


2021 ◽  
Vol 6 (2) ◽  
pp. 89
Author(s):  
Nur Rokhati ◽  
Aji Prasetyaningrum ◽  
Nur ‘Aini Hamada ◽  
Adi Lamda Cahyo Utomo ◽  
Hery Budiarto Kurniawan ◽  
...  

Logam berat adalah istilah untuk logam-logam seperti Cd, Cr, Cu, Hg, Ni, Pb, dan Zn yang sering berhubungan dengan polusi dan toksisitas. Adsorpsi merupakan metode yang paling sering digunakan untuk menghilangkan ion logam. Tongkol jagung berpotensi menjadi adsorben karena kadar selulosanya yang tinggi. Penelitian ini bertujuan untuk mengkaji performa tongkol jagung sebagai adsorben ion Cr(VI) dan Cd(II). Penelitian dimulai dengan perlakuan awal adsorben dan dilanjutkan dengan proses adsorbsi. Kadar logam berat dihitung dengan metode spektrofotometri. Nilai efisiensi penyerapan Cd(II) meningkat dengan adanya perlakuan awal menggunakan suhu tinggi. Jumlah logam yang terserap semakin banyak seiring dengan lamanya waktu adsorpsi dengan efisiensi penyerapan sebesar 94,76% untuk Cr(VI) dan 83,96% untuk Cd(II). Penambahan jumlah adsorben tongkol jagung juga meningkatkan efisiensi penyerapan logam kromium hingga 82,33% dan kadmium sebesar 83,98%. Sedangkan jumlah ion Cr(VI) yang terserap tidak linear dengan penambahan kecepatan pengadukan. Berdasarkan hasil penelitian, dapat disimpulkan bahwa tongkol jagung berpotensi digunakan sebagai adsorben ion logam berat dengan efisiensi di atas 80%.  Kata kunci: adsorpsi, kadmium, kromium, tongkol jagung AbstractHeavy metal is a term for metals such as Cd, Cr, Cu, Hg, Ni, Pb, and Zn, often associated with pollution and toxicity. Adsorption is the most commonly used method to remove metal ions. Corncob have the potential to be an adsorbent because of their high cellulose content. This study aimed to examine the performance of corncob as an adsorbent of Cr(VI) and Cd(II) ions. The study began with the pretreatment of the adsorbent and continued with the adsorption process. Heavy metal concentration was calculated by the spectrophotometric method. The value of the absorption efficiency of Cd(II) increased with the pretreatment using high temperature. The amount of metal adsorbed increased with the length of adsorption time with the absorption efficiency of 94.76% for Cr(VI) and 83.96% for Cd(II). The addition of corncob adsorbent also increased the efficiency of chromium metal absorption up to 82.33% and cadmium by 83.98%. Meanwhile, the amount of Cr(VI) ion adsorbed was not linear with increasing stirring speed. Based on the results, it can be concluded that corncob could be used as heavy metal ion adsorbents with an efficiency above 80%. Keywords: adsorption, cadmium, chromium, corn cob


2021 ◽  
Vol 6 (2) ◽  
pp. 66
Author(s):  
Retno Ambarwati Sigit Lestari

Indonesia memiliki banyak limbah pertanian yang selama ini hanya dibiarkan atau dibakar begitu saja. Limbah pertanian yang merupakan biomassa mengandung selulosa cukup tinggi dapat digunakan sebagai sumber energi terbarukan berupa briket. Penelitian ini bertujuan untuk mengetahui karakteristik briket yang dibuat  dari jerami padi, sampah daun dan kotoran sapi untuk dibandingkan dengan standar briket arang. Dalam penelitian ini dibuat briket dari bahan jerami padi, sampah daun dan kotoran sapi. Pembuatan briket biomassa dilakukan dengan teknik karbonisasi di dalam drum yang tertutup. Arang yang diperolah dihaluskan dan diayak 50 mesh selanjutnya ditambah bahan perekat berupa tapioka dengan perbandingan 7:1 dan sedikit air kemudian dicetak secara manual. Setelah dicetak, briket arang yang diperoleh  dijemur dibawah sinar matahari selama 3 hari. Waktu terbentuknya arang dari berbagai jenis biomassa berbeda-beda, waktu optimum untuk bahan dari jerami padi 30 menit, sampah daun 60 menit dan 75 menit untuk kotoran sapi dengan rendemen masing-masing 24,39%, 29,03%, dan 26,26%. Briket yang dihasilkan dari biomassa jerami padi memiliki kadar air 5,9% kadar abu 8,02%, kadar zat mudah menguap 35,68%, kadar karbon terikat 37,48% dan nilai kalor 3000 kal/gr. Briket dari sampah daun memiliki kadar air 5,6%, kadar abu 8,02%, kadar zat mudah menguap 32,46%, kadar karbon terikat 40,55% dan nilai kalor 4600 kal/gr. Briket dari kotoran sapi memiliki kadar air 8,4%, kadar abu 8,32%, kadar zat mudah menguap 26,63%, kadar karbon terikat 50,66% dan nilai kalor 5200 kal/gr. Kata kunci: briket, jerami padi, kotoran sapi,nilai kalor, sampah daun. AbstractIndonesia has a lot of agricultural waste that has been left or burned. Agricultural waste containing high cellulose which to be used as a renewable energy source in the form of briquettes. This study aims to find out the characteristics of briquettes made from rice straw, leaf litter and cow dung to be compared to standard charcoal briquettes. In this study made briquettes from rice straw, leaf waste and cow dung. The manufacture of biomass briquettes was done by carbonization in a closed drum.  The charcoal reduced in size in 50 mesh added tapioca adhesive in ratio of 7: 1 and a little water then formed to be briquettes manually. The charcoal briquettes obtained are dried in the sun for 3 days. The time for formation of charcoal from various types of biomass were varies, the optimum time for rice straw was 30 minutes, leaf waste was 60 minutes and 75 minutes for cow dung with yields of charcoal of rice straw was 24.39%, 29.03% for leaf waste and cow dung was 26.26%. Briquettes produced from biomass of rice straw have a  water content of 5.9% ash content of 8.02%, a volatile substance content of 35.68%, a carbon-bound content of 37.48% and a heat value of 3000 cal/gr. Briquettes from leaf litter have a water content of 5.6%, ash content of 8.02%, a volatile substance content of 32.46%, a carbon-bound content of 40.55% and a heat value of 4600 cal/gr. Briquettes from cow dung have a water content of 8.4%, ash content of 8.32%, a volatile substance content of 26.63%, a carbon-bound content of 50.66% and a heat value of 5200 cal/gr. Keywords:  briquettes, cow dung, heat value, leaf litter rice straw..


Author(s):  
Saowalak Somboon ◽  
Bhanudacha Kamolmanit ◽  
Phrueksa Lawongsa

The objective of this research was to study plant-microbe interactions in rhizospheric soil treated with different quality organic residues in short-term incubation of the soil and subsequent planting of maize crop. The treatments combinations were, 1) untreated soil (control; CT), 2) groundnut stover (GN) with high nitrogen (N) but low lignin (L) and polyphenol (PP), 3) tamarind leaf and petiole litter (TM) with medium N, L and PP, 4) rice straw (RS) with low N, L and PP but high cellulose, 5) GN+TM, 6) GN+RS and 7) TM+RS. Single and mixed residue additions of GN and TM, both high and intermediate quality, resulted in higher soil microbial properties and nutrients than the application of RS as a low quality. Accordingly, the application of the former group increased microbial abundances (i.e., bacteria, archaea, and fungi), elevated the enzymes related to the decomposition of organic residue (i.e., invertase, protease, phenoloxidase and peroxidase activity), and enhanced soil nutrients and plant growth. The results indicated that the chemical compositions (N, L, and PP) of the organic residues amendment are key factors regulating soil microbial abundance and enzyme activity both in after incorporation and after planting. Moreover, bacterial and archaeal abundance, and microbial activities including soil respiration, invertase, protease, and peroxidase activity in the soil after planting higher than those in the soil before planting.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7684-7701
Author(s):  
Noppadol Panchan ◽  
Pattra Wattanapan ◽  
Sirada Sungsinchai ◽  
Supacharee Roddecha ◽  
Peerapan Dittanet ◽  
...  

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, synthesis conditions of CMC from pineapple leaves via the use of microwave heating were optimized. Box-Behnken design and response surface methodology were applied to schedule the experiments and to optimize the synthesis condition, respectively. Preparation of CMC was investigated by varying three factors, namely, sodium hydroxide (NaOH) concentration, monochloroacetic acid (MCA) dose, and etherification time. The process of carboxymethylation was optimized to produce CMC with high degree of substitution (DS). Optimal condition for CMC synthesis was noted to be 50% (w/v) NaOH solution, 8 g of MCA/g cellulose, and etherification time of 16 min; such optimal condition resulted in the maximum DS of 0.78. Synthesized CMC was utilized as a thickener for liquid foods (water, orange juice, milk, and mushroom cream soup) where 2% (w/v) as-synthesized CMC increased the viscosity of the foods and changed their characteristics from thin to nectar-like liquids.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tao Xie ◽  
Fa Jin ◽  
Xiaokun Jia ◽  
Hengxu Mao ◽  
Yuting Xu ◽  
...  

Abstract It is widely accepted dietary fiber intimately linked to inflammatory and nervous diseases, which often been described with altered gastrointestinal (GI) motility. However, how dose dietary fiber modulate inflammation and crosstalk influence GI function has not been explained in detail. We found fiber-free diet reduced intestinal motility, accompanied by upregulated proinflammatory immunocytes and inflammatory cytokines in colon of mice. We also discovered high-cellulose diet increased synthesis of serotonin and expression of neurotrophic factors, both of that have been reported involved in promoting intestinal motility. In addition, metabolomics analysis showed increased tryptophan metabolites in high-cellulose diet mice, which happened to be required for serotonin biosynthesis. Further analysis revealed high-cellulose diet changed the composition of gut microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes, consequently, concentration of short-chain fatty acids (SCFAs), especially acetate. Orally administration of acetate confirmed its modulating to serotonin synthesis, neurotrophic factors expression and immunocyte differentiation through regulating histone deacetylase (HDAC3) activity in colon. Together, our results demonstrated high-cellulose diet promote intestinal motility through regulating intestinal homeostasis and enteric nervous system by increasing acetate production and HDAC3 inhibition. Thus, rich cellulose diet or acetate supplement can be considered as dietary advice to improve clinically intestinal motility insufficiency.


Author(s):  
heena Parveen ◽  
Lakshmi Tewari ◽  
Diwas Pradhan ◽  
Parul Chaudhary

Bamboo biomass is a potential source for the production of monomeric sugars containing high cellulose content with low amount of lignin. However, for efficient hydrolysis, the biomass treatment by effective pretreatment technique is required to minimize lignin content and other barrier components. During present study, the bamboo biomass was treated with different physical, chemical, biological and combined treatments to reduce the lignin content. Among all the pretreatments, the maximum lignin removal (14.5%) was obtained with the combined chemical and biological treatment under 2% NaOH+1% H2O2 +WDP2 fungal culture (5 plugs) conditions. In addition, lignolytic fungus and NaOH pretreatment was mainly effective in removing lignin, whereas the H2O2 pretreatment efficiently minimize cellulose crystallinity. To analyze structural changes of raw and treated biomass, we used scanning electron microscopy and fourier transform infrared spectroscopy. The structural analysis indicated that all treatments causes disruption in the biomass structure and loses the compactness of the biomass which facilitates the biomass conversion during hydrolysis process. The findings of the present study indicate effective pretreatment methods in breaching the recalcitrancy of the potential lignocellulosic biomass for maximum hydrolysis.


2021 ◽  
Author(s):  
Yuting Zhu ◽  
Yuhe Liao ◽  
Luying Lu ◽  
Wei Lv ◽  
Jing Liu ◽  
...  

<a></a><a>Herein, we report the catalytic use of multifunctional CuO nanoparticles (NPs) to oxidatively fractionate lignocellulosic feedstock with dioxygen in aqueous NaOH under mild conditions . In presence of CuO NPs, lignocellulose is fractionated into three parts, overall yielding 90% carbon efficiency. Lignin is converted to up to 45.6 wt% in organic soluble aromatic aldehyde monomers, rich in vanillin and syringaldehyde, the value surpassing the theoretical one based on b-O-4 bond content, indicating significant cleavage of other ether bonds. All hemicellulose is selectively converted into water soluble small (di)acids, mainly to oxalic acid. Up to 81% of cellulose, in contrast, is obtained as a white crystalline residue with high cellulose purity (over 95%), which can readily be transformed into high quality nanocellulose, useful in many applications.</a>


Sign in / Sign up

Export Citation Format

Share Document