The time—delayed correlation of the 100—year modulation of the solar rotation with the long—term modulations of the solar cycle

1993 ◽  
Vol 314 (1) ◽  
pp. 21-30 ◽  
Author(s):  
H. Yoshimura ◽  
M. A. Kambry
Keyword(s):  
2013 ◽  
Vol 552 ◽  
pp. A84 ◽  
Author(s):  
L. Zhang ◽  
K. Mursula ◽  
I. Usoskin

2020 ◽  
Vol 645 ◽  
pp. A2
Author(s):  
M. Meftah ◽  
M. Snow ◽  
L. Damé ◽  
D. Bolseé ◽  
N. Pereira ◽  
...  

Context. Solar spectral irradiance (SSI) is the wavelength-dependent energy input to the top of the Earth’s atmosphere. Solar ultraviolet (UV) irradiance represents the primary forcing mechanism for the photochemistry, heating, and dynamics of the Earth’s atmosphere. Hence, both temporal and spectral variations in solar UV irradiance represent crucial inputs to the modeling and understanding of the behavior of the Earth’s atmosphere. Therefore, measuring the long-term solar UV irradiance variations over the 11-year solar activity cycle (and over longer timescales) is fundamental. Thus, each new solar spectral irradiance dataset based on long-term observations represents a major interest and can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous solar spectral irradiance record. Aims. The main objective of this article is to present a new solar spectral irradiance database (SOLAR-v) with the associated uncertainties. This dataset is based on solar UV irradiance observations (165−300 nm) of the SOLAR/SOLSPEC space-based instrument, which provides measurements of the full-disk SSI during solar cycle 24. Methods. SOLAR/SOLSPEC made solar acquisitions between April 5, 2008 and February 10, 2017. During this period, the instrument was affected by the harsh space environment that introduces instrumental trends (degradation) in the SSI measurements. A new method based on an adaptation of the Multiple Same-Irradiance-Level (MuSIL) technique was used to separate solar variability and any uncorrected instrumental trends in the SOLAR/SOLSPEC UV irradiance measurements. Results. A new method for correcting degradation has been applied to the SOLAR/SOLSPEC UV irradiance records to provide new solar cycle variability results during solar cycle 24. Irradiances are reported at a mean solar distance of 1 astronomical unit (AU). In the 165−242 nm spectral region, the SOLAR/SOLSPEC data agrees with the observations (SORCE/SOLSTICE) and models (SATIRE-S, NRLSSI 2) to within the 1-sigma error envelope. Between 242 and 300 nm, SOLAR/SOLSPEC agrees only with the models.


2013 ◽  
Vol 13 (11) ◽  
pp. 30407-30452 ◽  
Author(s):  
W. Chehade ◽  
J. P. Burrows ◽  
M. Weber

Abstract. The study presents a~long term statistical trend analysis of total ozone datasets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11 yr solar cycle, the Quasi-Biennial Oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño/Southern Oscillation (ENSO), the Arctic and Antarctic Oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer–Dobson circulation. The total ozone column dataset used here comprises the SBUV/TOMS/OMI merged data (1979–2012) MOD V8.0, the SBUV/SBUV-2 merged V8.6 and the merged GOME/SCIAMACHY/GOME-2 (GSG) WFDOAS merged data (1995–2012). The trend analysis was performed for twenty six 5° wide latitude bands from 65° S to 65° N, the analysis explained most of the ozone variability. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. Volcanic aerosols are only prominent during the eruption periods and these together with the ENSO signal are more evident in the Northern Hemisphere. The signature of the solar cycle is evident over all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of 1990s. A positive significant trend in total ozone columns is found after 1997 (between 1 and 8.2 DU decade−1) which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT or hockey stick) model with a turnaround in 1997 to examine the differences between both approaches. Similar and significant pre-turnaround trends are observed. On the other hand, our results do indicate that the positive PWLT turnaround trends are larger than indicated by the EESC trends, however, they agree within 2-sigma, thus demonstrating the success of the Montreal Protocol phasing out of the ozone depleting substances (ODS). A sensitivity study is carried out by comparing the regression results, using SBUV MOD 8.0 merged time series (1979–2012) and a merged dataset combining TOMS/SBUV (1979–June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995–2012) as well as SBUV/SBUV-2 MOD 8.6 (1979–2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone datasets and data versions. Replacing the late SBUV merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite datasets. However, the comparison of the new SBUV merged Mod V8.6 with the V8.0 data showed somewhat smaller sensitivities with regard to several proxies, however, the EESC and PWLT trends are very similar. On the other hand, the new MOD 8.6 data in the PWLT model revealed a~reduced ODS related upward trend after 1997.


1997 ◽  
Vol 59 (5) ◽  
pp. 497-509 ◽  
Author(s):  
J. Bremer ◽  
R. Schminder ◽  
K.M. Greisiger ◽  
P. Hoffmann ◽  
D. Kürschner ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A138 ◽  
Author(s):  
G. Hawkes ◽  
A. R. Yeates

Aims. We estimate the injection of relative magnetic helicity into the solar atmosphere by surface flux transport over 27 solar cycles (1700–2009). Methods. We determine the radial magnetic field evolution using two separate surface flux transport models: one driven by magnetogram inputs and another by statistical active region insertion guided by the sunspot number record. The injection of relative magnetic helicity is then computed from this radial magnetic field together with the known electric field in the flux transport models. Results. Neglecting flux emergence, solar rotation is the dominant contributor to the helicity injection. At high latitudes, the injection is always negative/positive in the northern/southern hemisphere, while at low latitudes the injection tends to have the opposite sign when integrated over the full solar cycle. The overall helicity injection in a given solar cycle depends on the balance between these two contributions. This net injected helicity correlates well with the end-of-cycle axial dipole moment.


2020 ◽  
Vol 499 (4) ◽  
pp. 5442-5446
Author(s):  
Jaidev Sharma ◽  
Anil K Malik ◽  
Brajesh Kumar ◽  
Hari Om Vats

ABSTRACT In this paper, we report evidence of a very strong and statistically significant relationship between hemispheric asymmetry in the solar coronal rotation rate and solar activity. Our approach is based on the cross-correlation of the hemispheric asymmetry index (AI) in the rotation rate with annual solar activity indicators. To obtain the hemispheric asymmetry in the solar rotation rate, we use solar full disc (SFD) images at 30.4-, 19.5- and 28.4-nm wavelengths for the 24th solar cycle, that is, for the period from 2008 to 2018, as recorded by the Solar Terrestrial Relations Observatory (STEREO) space mission. Our analysis shows that the hemispheric asymmetry in rotation rate is high during the solar maxima from 2011 to 2014. However, hemispheric asymmetry decreases gradually on both sides (i.e. from 2008 to 2011 and from 2014 to 2018). The results show that the AI leads sunspot numbers by ∼ 1.56 yr. This is a clear indication that hemispheric asymmetry triggers the formation of sunspots in conjunction with the differential rotation of the Sun.


2004 ◽  
Vol 22 (4) ◽  
pp. 1171-1176 ◽  
Author(s):  
E. M. Apostolov ◽  
D. Altadill ◽  
M. Todorova

Abstract. Solar cycle variations of the amplitudes of the 27-day solar rotation period reflected in the geomagnetic activity index Ap, solar radio flux F10.7cm and critical frequency foF2 for mid-latitude ionosonde station Moscow from the maximum of sunspot cycle 18 to the maximum of cycle 23 are examined. The analysis shows that there are distinct enhancements of the 27-day amplitudes for foF2 and Ap in the late declining phase of each solar cycle while the amplitudes for F10.7cm decrease gradually, and the foF2 and Ap amplitude peaks are much larger for even-numbered solar cycles than for the odd ones. Additionally, we found the same even-high and odd-low pattern of foF2 for other mid-latitude ionosonde stations in Northern and Southern Hemispheres. This property suggests that there exists a 22-year cycle in the F2-layer variability coupled with the 22-year cycle in the 27-day recurrence of geomagnetic activity. Key words. Ionosphere (mid-latitude ionosphere; ionosphere- magnetosphere interactions) – Magnetospheric physics (solar wind-magnetosphere interactions)


2019 ◽  
Vol 887 (1) ◽  
pp. 1 ◽  
Author(s):  
Breno Raphaldini ◽  
André Seiji Teruya ◽  
Carlos F. M. Raupp ◽  
Miguel D. Bustamante

Sign in / Sign up

Export Citation Format

Share Document