Leaf and Flower Extracts of Six Michelia L.: Polyphenolic Composition, Antioxidant, Antibacterial Activities and in Vitro Inhibition of α‐Amylase and α‐Glucosidase

Author(s):  
Tianzhu Liao ◽  
Jiwu Cao ◽  
Zhenyu Yang ◽  
Jing Cheng ◽  
Jun Lu
Author(s):  
Pınar Güller ◽  
Ufuk Atmaca ◽  
Uğur Güller ◽  
Ulaş Çalışır ◽  
Feray Dursun

Aim: The aim of this study was to identify inhibition of carbonic anhydrase I and II (CA I and II) isozymes by azido sulfonyl carbamates through both in vitro and in silico approaches and also to determine the drug-likeness properties and antibacterial activities of azido sulfonyl carbamates. Methods & Results: In vitro inhibition and molecular docking studies of azido sulfonyl carbamate derivatives (1–4) on isozymes were performed. Except for derivative 4, all derivatives inhibited human CA I and II. Almost all compounds had antibacterial effects. The docking results showed that compound 3 had the best results, with binding energy of -8.20 kcal/mol for human CA I and -8.24 kcal/mol for human CA II. Conclusion: Molecule 4 inhibited only CA I. Its usage as a potential chemotherapeutic agent specific to the CA I isozyme may be considered.


Molbank ◽  
10.3390/m1189 ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. M1189
Author(s):  
Bayan Ahed Al-Hiyari ◽  
Ashok K. Shakya ◽  
Rajashri R. Naik ◽  
Sanaa Bardaweel

Three new Schiff bases of isoniazid were synthesized using microwave-assisted synthesis and conventional condensation with aromatic aldehydes. Synthesized compounds were characterized using elemental analysis, IR, NMR, and Mass spectroscopy. Synthesized compounds were evaluated for antiproliferative activity against MCF-7 cell line. The IC50 values were from 125 to 276 µM. The compounds were also evaluated for antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the synthesized compounds produce significant antibacterial activity in vitro. Inhibition of compounds ranged from 13 to 18 mm.


2007 ◽  
Vol 45 (08) ◽  
Author(s):  
D Hagelauer ◽  
O Kelber ◽  
D Weiser ◽  
S Laufer ◽  
H Heinle

Digestion ◽  
1982 ◽  
Vol 24 (1) ◽  
pp. 54-59 ◽  
Author(s):  
G. Isaksson ◽  
I. Lundquist ◽  
I. Ihse

2006 ◽  
Vol 50 (4) ◽  
pp. 1228-1237 ◽  
Author(s):  
Nagraj Mani ◽  
Christian H. Gross ◽  
Jonathan D. Parsons ◽  
Brian Hanzelka ◽  
Ute Müh ◽  
...  

ABSTRACT Antibiotics with novel mechanisms of action are becoming increasingly important in the battle against bacterial resistance to all currently used classes of antibiotics. Bacterial DNA gyrase and topoisomerase IV (topoIV) are the familiar targets of fluoroquinolone and coumarin antibiotics. Here we present the characterization of two members of a new class of synthetic bacterial topoII ATPase inhibitors: VRT-125853 and VRT-752586. These aminobenzimidazole compounds were potent inhibitors of both DNA gyrase and topoIV and had excellent antibacterial activities against a wide spectrum of problematic pathogens responsible for both nosocomial and community-acquired infections, including staphylococci, streptococci, enterococci, and mycobacteria. Consistent with the novelty of their structures and mechanisms of action, antibacterial potency was unaffected by commonly encountered resistance phenotypes, including fluoroquinolone resistance. In time-kill assays, VRT-125853 and VRT-752586 were bactericidal against Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis, and Haemophilus influenzae, causing 3-log reductions in viable cells within 24 h. Finally, similar to the fluoroquinolones, relatively low frequencies of spontaneous resistance to VRT-125853 and VRT-752586 were found, a property consistent with their in vitro dual-targeting activities.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1773
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.


2021 ◽  
Author(s):  
Na Li ◽  
Zhen Wang ◽  
Rui Wang ◽  
Zhe-Rui Zhang ◽  
Ya-Nan Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document