High-Affinity Carbohydrate Binding by Trimeric Benzoboroxoles Measured on Carbohydrate Arrays

ChemBioChem ◽  
2014 ◽  
Vol 15 (16) ◽  
pp. 2450-2457 ◽  
Author(s):  
Dorith Claes ◽  
Elisabeth Memmel ◽  
Malte Holzapfel ◽  
Jürgen Seibel ◽  
Wolfgang Maison
2010 ◽  
Vol 191 (7) ◽  
pp. 1351-1365 ◽  
Author(s):  
Emilie Montembault ◽  
Wei Zhang ◽  
Marcin R. Przewloka ◽  
Vincent Archambault ◽  
Emeric W. Sevin ◽  
...  

Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase–like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for β-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.


2021 ◽  
Author(s):  
Lukas Gajdos ◽  
Matthew P Blakeley ◽  
Michael Haertlein ◽  
V Trevor Forsyth ◽  
Juliette M Devos ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections.


2003 ◽  
Vol 373 (2) ◽  
pp. 495-503 ◽  
Author(s):  
Estelle DEVILLARD ◽  
Christel BERA-MAILLET ◽  
Harry J. FLINT ◽  
Karen P. SCOTT ◽  
C. James NEWBOLD ◽  
...  

A new xylanase gene, xyn10B, was isolated from the ruminal protozoan Polyplastron multivesiculatum and the gene product was characterized. XYN10B is the first protozoan family 10 glycoside hydrolase characterized so far and is a modular enzyme comprising a family 22 carbohydrate-binding module (CBM) preceding the catalytic domain. The CBM22 was shown to be a true CBM. It showed high affinity for soluble arabinoxylan and is the first example of a CBM22 that binds strongly to celluloses of various crystallinities. The enzymic properties of XYN10B were also analysed. Its optimal temperature and pH for activity were 39 °C and 7.0 respectively; these values being close to those of the ruminal ecosystem. The phylogenetic relationships between the XYN10B CBM22 or catalytic domain and related sequences from ruminal and non-ruminal bacteria and eukaryotes are reported. The xyn10B gene is shown to lack introns.


2010 ◽  
Vol 10 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Katty V. Y. Goossens ◽  
Catherine Stassen ◽  
Ingeborg Stals ◽  
Dagmara S. Donohue ◽  
Bart Devreese ◽  
...  

ABSTRACTSaccharomyces cerevisiaecells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p tod-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3621
Author(s):  
Irene Maier ◽  
Robert H. Schiestl ◽  
Georg Kontaxis

Glycan-targeting antibodies and pseudo-antibodies have been extensively studied for their stoichiometry, avidity, and their interactions with the rapidly modifying glycan shield of influenza A. Broadly neutralizing antiviral agents bind in the same order when they neutralize enveloped viruses regardless of the location of epitopes to the host receptor binding site. Herein, we investigated the binding of cyanovirin-N (CV–N) to surface-expressed glycoproteins such as those of human immunodeficiency virus (HIV) gp120, hemagglutinin (HA), and Ebola (GP)1,2 and compared their binding affinities with the binding response to the trimer-folded gp140 using surface plasmon resonance (SPR). Binding-site knockout variants of an engineered dimeric CV–N molecule (CVN2) revealed a binding affinity that correlated with the number of (high-) affinity binding sites. Binding curves were specific for the interaction with N-linked glycans upon binding with two low-affinity carbohydrate binding sites. This biologically active assembly of a domain-swapped CVN2, or monomeric CV–N, bound to HA with a maximum KD of 2.7 nM. All three envelope spike proteins were recognized at a nanomolar KD, whereas binding to HIV neutralizing 2G12 by targeting HA and Ebola GP1,2 was measured in the µM range and specific for the bivalent binding scheme in SPR. In conclusion, invariant structural protein patterns provide a substrate for affinity maturation in the membrane-anchored HA regions, as well as the glycan shield on the membrane-distal HA top part. They can also induce high-affinity binding in antiviral CV–N to HA at two sites, and CVN2 binding is achieved at low-affinity binding sites.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Minyong Chen ◽  
Xiaofeng Shi ◽  
Rebecca M. Duke ◽  
Cristian I. Ruse ◽  
Nan Dai ◽  
...  

2005 ◽  
Vol 71 (8) ◽  
pp. 4548-4555 ◽  
Author(s):  
Makoto Yoshida ◽  
Kiyohiko Igarashi ◽  
Masahisa Wada ◽  
Satoshi Kaneko ◽  
Norio Suzuki ◽  
...  

ABSTRACT cDNA encoding a hemoprotein similar to the cytochrome domain of extracellular flavocytochrome cellobiose dehydrogenase (CDH) was cloned from the white-rot fungus Phanerochaete chrysosporium. The deduced amino acid sequence implies that there is a two-domain structure consisting of an N-terminal cytochrome domain and a C-terminal family 1 carbohydrate-binding module (CBM1) but that the flavin-containing domain of CDH is not present. The gene transcripts were observed in cultures in cellulose medium but not in cultures in glucose medium, suggesting that there is regulation by carbon catabolite repression. The gene was successfully overexpressed in Pichia pastoris, and the recombinant protein was designated carbohydrate-binding cytochrome b 562 (CBCyt. b 562). The resonance Raman spectrum suggested that the heme of CBCyt. b 562 is 6-coordinated in both the ferric and ferrous states. Moreover, the redox potential measured by cyclic voltammetry was similar to that of the cytochrome domain of CDH. These results suggest that the redox characteristics may be similar to those of the cytochrome domain of CDH, and so CBCyt. b 562 may have an electron transfer function. In a binding study with various carbohydrates, CBCyt. b 562 was adsorbed with high affinity on both cellulose and chitin. As far as we know, this is the first example of a CBM1 connected to a domain without apparent catalytic activity for carbohydrate; this CBM1 may play a role in localization of the redox protein on the surface of cellulose or on the fungal sheath in vivo.


2019 ◽  
Vol 71 (1) ◽  
pp. 234-246
Author(s):  
Yingxin Zhong ◽  
Domenico Sagnelli ◽  
Henrik Bak Topbjerg ◽  
Harald Hasler-Sheetal ◽  
Olga Agata Andrzejczak ◽  
...  

Interference in protein–starch interactions in barley by the expression of an exogenous high-affinity starch-binding factor (Carbohydrate-Binding Motif 20, CBM20) reveals a link between starch granule biosynthesis and the level of photosynthesis.


2020 ◽  
Vol 295 (34) ◽  
pp. 12111-12129
Author(s):  
Nisha Grandhi Jayaprakash ◽  
Amrita Singh ◽  
Rahul Vivek ◽  
Shivender Yadav ◽  
Sanmoy Pathak ◽  
...  

N-Linked glycans are critical to the infection cycle of HIV, and most neutralizing antibodies target the high-mannose glycans found on the surface envelope glycoprotein-120 (gp120). Carbohydrate-binding proteins, particularly mannose-binding lectins, have also been shown to bind these glycans. Despite their therapeutic potency, their ability to cause lymphocyte proliferation limits their application. In this study, we report one such lectin named horcolin (Hordeum vulgare lectin), seen to lack mitogenicity owing to the divergence in the residues at its carbohydrate-binding sites, which makes it a promising candidate for exploration as an anti-HIV agent. Extensive isothermal titration calorimetry experiments reveal that the lectin was sensitive to the length and branching of mannooligosaccharides and thereby the total valency. Modeling and simulation studies demonstrate two distinct modes of binding, a monovalent binding to shorter saccharides and a bivalent mode for higher glycans, involving simultaneous interactions of multiple glycan arms with the primary carbohydrate-binding sites. This multivalent mode of binding was further strengthened by interactions of core mannosyl residues with a secondary conserved site on the protein, leading to an exponential increase in affinity. Finally, we confirmed the interaction of horcolin with recombinant gp120 and gp140 with high affinity and inhibition of HIV infection at nanomolar concentrations without mitogenicity.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Lukas Gajdos ◽  
Matthew P. Blakeley ◽  
Michael Haertlein ◽  
V. Trevor Forsyth ◽  
Juliette M. Devos ◽  
...  

AbstractThe opportunistic pathogen Pseudomonas aeruginosa, a major cause of nosocomial infections, uses carbohydrate-binding proteins (lectins) as part of its binding to host cells. The fucose-binding lectin, LecB, displays a unique carbohydrate-binding site that incorporates two closely located calcium ions bridging between the ligand and protein, providing specificity and unusually high affinity. Here, we investigate the mechanisms involved in binding based on neutron crystallography studies of a fully deuterated LecB/fucose/calcium complex. The neutron structure, which includes the positions of all the hydrogen atoms, reveals that the high affinity of binding may be related to the occurrence of a low-barrier hydrogen bond induced by the proximity of the two calcium ions, the presence of coordination rings between the sugar, calcium and LecB, and the dynamic behaviour of bridging water molecules at room temperature. These key structural details may assist in the design of anti-adhesive compounds to combat multi-resistance bacterial infections.


Sign in / Sign up

Export Citation Format

Share Document