scholarly journals Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes

2010 ◽  
Vol 191 (7) ◽  
pp. 1351-1365 ◽  
Author(s):  
Emilie Montembault ◽  
Wei Zhang ◽  
Marcin R. Przewloka ◽  
Vincent Archambault ◽  
Emeric W. Sevin ◽  
...  

Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase–like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for β-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.

2011 ◽  
Vol 193 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Tobias Morawe ◽  
Mona Honemann-Capito ◽  
Walter von Stein ◽  
Andreas Wodarz

In Drosophila melanogaster oogenesis, there are 16 germline cells that form a cyst and stay connected to each other by ring canals. Ring canals allow the cytoplasmic transport of proteins, messenger ribonucleic acids, and yolk components from the nurse cells into the oocyte. In this paper, we describe the protein Rings lost (Rngo) and show that it is required for ring canal growth in germline cysts. rngo is an essential gene, and germline clones of a rngo-null allele show defects in ovary development, including mislocalization of ring canal proteins and fusion of germline cells. Rngo appears to be a ubiquitin receptor that possesses a ubiquitin-like domain, a ubiquitin-associated domain, and a retroviral-like aspartate protease (RVP) domain. Rngo binds to ubiquitin and to the 26S proteasome and colocalizes with both in germline cells, and its RVP domain is required for dimerization of Rngo and for its function in vivo. Our results thus show, for the first time, a function for a ubiquitin receptor in Drosophila development.


2020 ◽  
Author(s):  
Julianne A. Gerdes ◽  
Katelynn M. Mannix ◽  
Andrew M. Hudson ◽  
Lynn Cooley

AbstractRing canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC, a component specific to female germline ring canals, is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ring-canal-like ectopic actin structures in somatic follicle cells. Finally, we present findings which indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility, a result which is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.


Genetics ◽  
2020 ◽  
Vol 216 (3) ◽  
pp. 717-734
Author(s):  
Julianne A. Gerdes ◽  
Katelynn M. Mannix ◽  
Andrew M. Hudson ◽  
Lynn Cooley

Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC—a component specific to female germline ring canals—is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility—a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.


2006 ◽  
Vol 173 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Fang Yang ◽  
Rabindranath De La Fuente ◽  
N. Adrian Leu ◽  
Claudia Baumann ◽  
K. John McLaughlin ◽  
...  

During meiosis, the arrangement of homologous chromosomes is tightly regulated by the synaptonemal complex (SC). Each SC consists of two axial/lateral elements (AEs/LEs), and numerous transverse filaments. SC protein 2 (SYCP2) and SYCP3 are integral components of AEs/LEs in mammals. We find that SYCP2 forms heterodimers with SYCP3 both in vitro and in vivo. An evolutionarily conserved coiled coil domain in SYCP2 is required for binding to SYCP3. We generated a mutant Sycp2 allele in mice that lacks the coiled coil domain. The fertility of homozygous Sycp2 mutant mice is sexually dimorphic; males are sterile because of a block in meiosis, whereas females are subfertile with sharply reduced litter size. Sycp2 mutant spermatocytes exhibit failure in the formation of AEs and chromosomal synapsis. Strikingly, the mutant SYCP2 protein localizes to axial chromosomal cores in both spermatocytes and fetal oocytes, but SYCP3 does not, demonstrating that SYCP2 is a primary determinant of AEs/LEs and, thus, is required for the incorporation of SYCP3 into SCs.


2002 ◽  
Vol 156 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Andrew M. Hudson ◽  
Lynn Cooley

The Arp2/3 complex has been shown to dramatically increase the slow spontaneous rate of actin filament nucleation in vitro, and it is known to be important for remodeling the actin cytoskeleton in vivo. We isolated and characterized loss of function mutations in genes encoding two subunits of the Drosophila Arp2/3 complex: Arpc1, which encodes the homologue of the p40 subunit, and Arp3, encoding one of the two actin-related proteins. We used these mutations to study how the Arp2/3 complex contributes to well-characterized actin structures in the ovary and the pupal epithelium. We found that the Arp2/3 complex is required for ring canal expansion during oogenesis but not for the formation of parallel actin bundles in nurse cell cytoplasm and bristle shaft cells. The requirement for Arp2/3 in ring canals indicates that the polymerization of actin filaments at the ring canal plasma membrane is important for driving ring canal growth.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Laetitia Seguin ◽  
Soline Odouard ◽  
Francesca Corlazzoli ◽  
Sarah Al Haddad ◽  
Laurine Moindrot ◽  
...  

AbstractRecently, we involved the carbohydrate-binding protein Galectin-3 (Gal-3) as a druggable target for KRAS-mutant-addicted lung and pancreatic cancers. Here, using glioblastoma patient-derived stem cells (GSCs), we identify and characterize a subset of Gal-3high glioblastoma (GBM) tumors mainly within the mesenchymal subtype that are addicted to Gal-3-mediated macropinocytosis. Using both genetic and pharmacologic inhibition of Gal-3, we showed a significant decrease of GSC macropinocytosis activity, cell survival and invasion, in vitro and in vivo. Mechanistically, we demonstrate that Gal-3 binds to RAB10, a member of the RAS superfamily of small GTPases, and β1 integrin, which are both required for macropinocytosis activity and cell survival. Finally, by defining a Gal-3/macropinocytosis molecular signature, we could predict sensitivity to this dependency pathway and provide proof-of-principle for innovative therapeutic strategies to exploit this Achilles’ heel for a significant and unique subset of GBM patients.


Sign in / Sign up

Export Citation Format

Share Document