Modular Design of Supramolecular Ionic Peptides with Cell‐Selective Membrane Activity

ChemBioChem ◽  
2021 ◽  
Author(s):  
Su Yang ◽  
Yan Chang ◽  
Shan Hazoor ◽  
Chad Brautigam ◽  
Frank W. Foss ◽  
...  
2011 ◽  
Vol 55 (7) ◽  
pp. 3446-3452 ◽  
Author(s):  
Christopher W. Kaplan ◽  
Jee Hyun Sim ◽  
Kevin R. Shah ◽  
Aida Kolesnikova-Kaplan ◽  
Wenyuan Shi ◽  
...  

ABSTRACTThe specifically targeted antimicrobial peptide (STAMP) C16G2 was developed to target the cariogenic oral pathogenStreptococcus mutans. Because the design of this peptide was novel, we sought to better understand the mechanism through which it functioned. Compared to antimicrobial peptides (AMPs) with wide spectra of activity, the STAMP C16G2 has demonstrated specificity forS. mutansin a mixed-culture environment, resulting in the complete killing ofS. mutanswhile having minimal effect on the other streptococci. In the current study, we sought to further confirm the selectivity of C16G2 and also compare its membrane activity to that of melittin B, a classical toxic AMP, in order to determine the STAMP's mechanism of cell killing. Disruption ofS. mutanscell membranes by C16G2 was demonstrated by increased SYTOX green uptake and ATP efflux from the cells similar to those of melittin B. Treatment with C16G2 also resulted in a loss of membrane potential as measured by DiSC(3)5 fluorescence. In comparison, the individual moieties of C16G2 demonstrated no specificity and limited antimicrobial activity compared to those of the STAMP C16G2. The data suggest that C16G2 has a mechanism of action similar to that of traditional AMPs and killsS. mutansthrough disruption of the cell membrane, allowing small molecules to leak out of the cell, which is followed by a loss of membrane potential and cell death. Interestingly, this membrane activity is rapid and potent againstS. mutans, but not other noncariogenic oral streptococci.


1999 ◽  
Vol 78 (3) ◽  
pp. 113-116 ◽  
Keyword(s):  

2010 ◽  
Vol 75 (5) ◽  
pp. 563-575 ◽  
Author(s):  
Moslem Mohammadi ◽  
Mehdi Khodadadian ◽  
Mohammad K. Rofouei

A plasticized poly(vinyl chloride) membrane electrode based on 4-[(5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl]benzene-1,3-diol (L) for highly selective determination of palladium(II) (in PdCl42– form) is developed. The electrode showed a good Nernstian response (29.6 ± 0.4 mV per decade) over a wide concentration range (3.1 × 10–7 to 1.0 × 10–2 mol l–1). The limit of detection was 1.5 × 10–7 mol l–1. The electrode has a response time of about 20 s, and it can be used for at least 2 months without observing any considerable deviation from Nernstian response. The proposed electrode could be used in the pH range of 2.5–5.5. The practical utility of the electrode has been demonstrated by its use for the estimation of palladium content in aqueous samples.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Meng-Yuan Chen ◽  
Yong-Jian Wu ◽  
Hongmei He

Abstract In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.


Author(s):  
Kemal Guvenli ◽  
Sibel Yenikaya ◽  
Mustafa Secmen ◽  
Ceyhan Turkmen

2021 ◽  
Vol 13 (7) ◽  
pp. 168781402110343
Author(s):  
Mei Yang ◽  
Yimin Xia ◽  
Lianhui Jia ◽  
Dujuan Wang ◽  
Zhiyong Ji

Modular design, Axiomatic design (AD) and Theory of inventive problem solving (TRIZ) have been increasingly popularized in concept design of modern mechanical product. Each method has their own advantages and drawbacks. The benefit of modular design is reducing the product design period, and AD has the capability of problem analysis, while TRIZ’s expertise is innovative idea generation. According to the complementarity of these three approaches, an innovative and systematic methodology is proposed to design big complex mechanical system. Firstly, the module partition is executed based on scenario decomposition. Then, the behavior attributes of modules are listed to find the design contradiction, including motion form, spatial constraints, and performance requirements. TRIZ tools are employed to deal with the contradictions between behavior attributes. The decomposition and mapping of functional requirements and design parameters are carried out to construct the structural hierarchy of each module. Then, modules are integrated considering the connections between each other. Finally, the operation steps in application scenario are designed in temporal and spatial dimensions. Design of cutter changing robot for shield tunneling machine is taken as an example to validate the feasibility and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document