scholarly journals MicroRNA-30a Suppresses the Activation of Hepatic Stellate Cells by Inhibiting Epithelial-to-Mesenchymal Transition

2018 ◽  
Vol 46 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Jianjian Zheng ◽  
Wei Wang ◽  
Fujun Yu ◽  
Peihong Dong ◽  
Bicheng Chen ◽  
...  

Background/Aims: The activation of hepatic stellate cells (HSCs) is considered as a pivotal event in liver fibrosis and epithelial-mesenchymal transition (EMT) process has been reported to be involved in HSC activation. It is known that microRNAs (miRNAs) play a pro-fibrotic or anti-fibrotic role in HSC activation. Recently, emerging studies show that miR-30a is down-regulated in human cancers and over-expression of miR-30a inhibits tumor growth and invasion via suppressing EMT process. However, whether miR-30a could regulate EMT process in HSC activation is still unclear. Methods: miR-30a expression was quantified using real-time PCR in carbon tetrachloride (CCl4)-induced rat liver fibrosis, activated HSCs and patients with cirrhosis. Roles of miR-30a in liver fibrosis in vivo and in vitro were also analyzed. Luciferase activity assays were performed to examine the binding of miR-30a to the 3′-untranslated region of snail family transcriptional repressor 1 (Snai1). Results: miR-30a was down-regulated in human cirrhotic tissues. In CCl4 rats, reduced miR-30a was found in fibrotic liver tissues as well as isolated HSCs. There was a significant reduction in miR-30a in primary HSCs during culture days. miR-30a over-expression resulted in the suppression of CCl4-induced liver fibrosis. Restoration of miR-30a led to the inhibition of HSC activation including cell proliferation, α-SMA and collagen expression. Notably, miR-30a inhibited EMT process, with a reduction in TGF-β1 and Vimentin as well as an increase in GFAP and E-cadherin. miR-30a induced a significant reduction in Snai1 protein expression when compared with the control. Interestingly, Snail protein expression was increased during liver fibrosis, indicating that there may be a negative correlation between miR-30a level and Snai1 protein expression. Further studies demonstrated that Snai1 was a target of miR-30a. Conclusion: Our results suggest that miR-30a inhibits EMT process, at least in part, via reduction of Snai1, leading to the suppression of HSC activation in liver fibrosis.

2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Zhemin Shi ◽  
Kun Zhang ◽  
Ting Chen ◽  
Yu Zhang ◽  
Xiaoxiao Du ◽  
...  

AbstractThe excessive accumulation of extracellular matrix (ECM) is a key feature of liver fibrosis and the activated hepatic stellate cells (HSCs) are the major producer of ECM proteins. However, the precise mechanisms and target molecules that are involved in liver fibrosis remain unclear. In this study, we reported that activating transcription factor 3 (ATF3) was over-expressed in mice and human fibrotic livers, in activated HSCs and injured hepatocytes (HCs). Both in vivo and in vitro study have revealed that silencing ATF3 reduced the expression of pro-fibrotic genes and inhibited the activation of HSCs, thus alleviating the extent of liver fibrosis, indicating a potential protective role of ATF3 knockdown. However, ATF3 was not involved in either the apoptosis or proliferation of HCs. In addition, our data illustrated that increased nuclear localization of ATF3 promoted the transcription of fibrogenic genes and lnc-SCARNA10, which functioned as a novel positive regulator of TGF-β signaling in liver fibrogenesis by recruiting SMAD3 to the promoter of these genes. Interestingly, further study also demonstrated that lnc-SCARNA10 promoted the expression of ATF3 in a TGF-β/SMAD3-dependent manner, revealing a TGF-β/ATF3/lnc-SCARNA10 axis that contributed to liver fibrosis by activating HSCs. Taken together, our data provide a molecular mechanism implicating induced ATF3 in liver fibrosis, suggesting that ATF3 may represent a useful target in the development of therapeutic strategies for liver fibrosis.


2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Chun-xiao Pan ◽  
Fan-rong Wu ◽  
Xiao-yu Wang ◽  
Jie Tang ◽  
Wen-fan Gao ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
pp. 25-37
Author(s):  
Haleigh B. Eubanks ◽  
Elise G. Lavoie ◽  
Jessica Goree ◽  
Jeffrey A. Kamykowski ◽  
Neriman Gokden ◽  
...  

Hepatic stellate cells (HSC) are critical effector cells of liver fibrosis. In the injured liver, HSC differentiate into a myofibrobastic phenotype. A critical feature distinguishing myofibroblastic from quiescent HSC is cytoskeletal reorganization. Soluble NSF attachment receptor (SNARE) proteins are important in trafficking of newly synthesized proteins to the plasma membrane for release into the extracellular environment. The goals of this project were to determine the expression of specific SNARE proteins in myofibroblastic HSC and to test whether their alteration changed the HSC phenotype in vitro and progression of liver fibrosis in vivo. We found that HSC lack the t-SNARE protein, SNAP-25, but express a homologous protein, SNAP-23. Downregulation of SNAP-23 in HSC induced reduction in polymerization and disorganization of the actin cytoskeleton associated with loss of cell movement. In contrast, reduction in SNAP-23 in mice by monogenic deletion delayed but did not prevent progression of liver fibrosis to cirrhosis. Taken together, these findings suggest that SNAP-23 is an important regular of actin dynamics in myofibroblastic HSC, but that the role of SNAP-23 in the progression of liver fibrosis in vivo is unclear.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qi Wang ◽  
Song Wei ◽  
Lei Li ◽  
Qingfa Bu ◽  
Haoming Zhou ◽  
...  

AbstractLiver fibrosis is a patho-physiological process which can develop into cirrhosis, and hepatic carcinoma without intervention. Our study extensively investigated the mechanisms of lncRNA NEAT1 and miR-139-5p in regulating liver fibrosis progression. Our results demonstrated that the expression of lncRNA NEAT1 was increased and the expression of miR-139-5p was decreased in fibrotic liver tissues. LncRNA NEAT1 could sponge miR-139-5p and promoted hepatic stellate cells (HSCs) activation by directly inhibiting the expression of miR-139-5p. The co-localization of lncRNA NEAT1 with miR-139-5p was shown in the cytosols of activated HSCs. miR-139-5p upregulation could suppress the expression of β-catenin. The overexpression of β-catenin promoted HSCs activation. Moreover, we found that β-catenin could interact with SOX9 promoted HSCs activation. Our further studies demonstrated that SOX9 could bind with the TGF-β1 promoter and promoted the transcription activity of TGF-β1. The upregulation of TGF-β1 further promoted HSCs activation. In vivo study also suggested that lncRNA NEAT1 knockdown and miR-139-5p overexpression alleviated murine liver fibrosis. LncRNA NEAT1 exacerbated liver fibrosis by suppressing the expression of miR-139-5p. Collectively, our study suggested that miR-139-5p sponged by lncRNA NEAT1 regulated liver fibrosis via targeting β-catenin/SOX9/TGF-β1 Pathway.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 503 ◽  
Author(s):  
Oliver Krenkel ◽  
Jana Hundertmark ◽  
Thomas Ritz ◽  
Ralf Weiskirchen ◽  
Frank Tacke

Activation of hepatic stellate cells (HSCs) and their trans-differentiation towards collagen-secreting myofibroblasts (MFB) promote liver fibrosis progression. During chronic liver disease, resting HSCs become activated by inflammatory and injury signals. However, HSCs/MFB not only produce collagen, but also secrete cytokines, participate in metabolism, and have biomechanical properties. We herein aimed to characterize the heterogeneity of these liver mesenchymal cells by single cell RNA sequencing. In vivo resting HSCs or activated MFB were isolated from C57BL6/J mice challenged by carbon tetrachloride (CCl4) intraperitoneally for 3 weeks to induce liver fibrosis and compared to in vitro cultivated MFB. While resting HSCs formed a homogenous population characterized by high platelet derived growth factor receptor β (PDGFRβ) expression, in vivo and in vitro activated MFB split into heterogeneous populations, characterized by α-smooth muscle actin (α-SMA), collagens, or immunological markers. S100 calcium binding protein A6 (S100A6) was a universal marker of activated MFB on both the gene and protein expression level. Compared to the heterogeneity of in vivo MFB, MFB in vitro sequentially and only transiently expressed marker genes, such as chemokines, during culture activation. Taken together, our data demonstrate the heterogeneity of HSCs and MFB, indicating the existence of functionally relevant subsets in hepatic fibrosis.


2009 ◽  
Vol 297 (6) ◽  
pp. G1093-G1106 ◽  
Author(s):  
Steve S. Choi ◽  
Alessia Omenetti ◽  
Rafal P. Witek ◽  
Cynthia A. Moylan ◽  
Wing-Kin Syn ◽  
...  

Myofibroblastic hepatic stellate cells (MF-HSC) are derived from quiescent hepatic stellate cells (Q-HSC). Q-HSC express certain epithelial cell markers and have been reported to form junctional complexes similar to epithelial cells. We have shown that Hedgehog (Hh) signaling plays a key role in HSC growth. Because Hh ligands regulate epithelial-to-mesenchymal transition (EMT), we determined whether Q-HSC express EMT markers and then assessed whether these markers change as Q-HSC transition into MF-HSC and whether the process is modulated by Hh signaling. Q-HSC were isolated from healthy livers and cultured to promote myofibroblastic transition. Changes in mRNA and protein expression of epithelial and mesenchymal markers, Hh ligands, and target genes were monitored in HSC treated with and without cyclopamine (an Hh inhibitor). Studies were repeated in primary human HSC and clonally derived HSC from a cirrhotic rat. Q-HSC activation in vitro (culture) and in vivo (CCl4-induced cirrhosis) resulted in decreased expression of Hh-interacting protein (Hhip, an Hh antagonist), the EMT inhibitors bone morphogenic protein (BMP-7) and inhibitor of differentiation (Id2), the adherens junction component E-cadherin, and epithelial keratins 7 and 19 and increased expression of Gli2 (an Hh target gene) and mesenchymal markers, including the mesenchyme-associated transcription factors Lhx2 and Msx2, the myofibroblast marker α-smooth muscle actin, and matrix molecules such as collagen. Cyclopamine reverted myofibroblastic transition, reducing mesenchymal gene expression while increasing epithelial markers in rodent and human HSC. We conclude that Hh signaling plays a key role in transition of Q-HSC into MF-HSC. Our findings suggest that Q-HSC are capable of transitioning between epithelial and mesenchymal fates.


Sign in / Sign up

Export Citation Format

Share Document