Effects of pulse crop types and extrusion parameters on the physicochemical properties, in vitro and in vivo starch digestibility of pet foods

2022 ◽  
Author(s):  
Yikai Ren ◽  
Chloe Quilliam ◽  
Lynn P. Weber ◽  
Thomas D. Warkentin ◽  
Mehmet C. Tulbek ◽  
...  
2018 ◽  
Vol 83 ◽  
pp. 511 ◽  
Author(s):  
Peng Guo ◽  
Jinglin Yu ◽  
Shujun Wang ◽  
Shuo Wang ◽  
Les Copeland

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2507
Author(s):  
Simonetta Fois ◽  
Piero Pasqualino Piu ◽  
Manuela Sanna ◽  
Tonina Roggio ◽  
Pasquale Catzeddu

The use of wholemeal flour and sourdough fermentation in different food matrices has received considerable attention in recent years due to its resulting health benefits. In this study, a semolina-based and a wholemeal semolina-based sourdough were prepared and added to the formulation of gnocchetti-type fresh pasta. Four types of gnocchetti were made, using semolina plus semolina-based sourdough (SS), semolina plus wholemeal semolina-based sourdough (SWS), semolina alone (S), and semolina plus wholemeal semolina (WS). The latter two were used as controls. The digestibility of starch was studied both in vitro and in vivo, and the glycemic response (GR) and glycemic load (GL) were determined. Starch digestibility, both in vivo and in vitro, was higher in wholemeal semolina than semolina pasta and the resulting GR values (mg dL−1 min−1) were also higher (2209 and 2277 for WS and SWS; 1584 and 1553 for S and SS, respectively). The use of sourdough significantly reduced the rapidly digestible starch (RDS) content and increased the inaccessible digestible starch (IDS) content. The addition of sourdough to the formulation had no effect on the GR values, but led to a reduction of the GL of the pasta. These are the first data on the GR and GL of fresh pasta made with sourdough.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3224 ◽  
Author(s):  
Beata Kaczmarek

As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.


mAbs ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 244-255 ◽  
Author(s):  
Lindsay B. Avery ◽  
Jason Wade ◽  
Mengmeng Wang ◽  
Amy Tam ◽  
Amy King ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document