Row spacing and seeding rate effect on soybean seed yield in North Dakota

cftm ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Peder K. Schmitz ◽  
Jordan D. Stanley ◽  
Hans Kandel
Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 605
Author(s):  
Peder K. Schmitz ◽  
Hans J. Kandel

Planting date (PD), seeding rate (SR), relative maturity (RM) of cultivars, and row spacing (RS) are primary management factors affecting soybean (Glycine max (L.) Merr.) yield. The individual and synergistic effects of PD, SR, RM, and RS on seed yield and agronomic characteristics in North Dakota were herein investigated. Early and late PD, early and late RM cultivars, two SR (408,000 and 457,000 seed ha−1), and two RS (30.5 and 61 cm) were evaluated in four total environments in 2019 and 2020. Maximizing green canopy cover prior to the beginning of flowering improved seed yield. Individual factors of early PD and narrow RS resulted in yield increase of 311 and 266 kg ha−1, respectively. The combined factors of early PD, late RM, high SR, and narrow RS improved yield by 26% and provided a $350 ha−1 partial profit over conventional practices. Canopy cover and yield had relatively weak relationships with r2 of 0.36, 0.23, 0.14, and 0.21 at the two trifoliolate, four trifoliolate, beginning of flowering, and beginning of pod formation soybean growth stages, respectively. Producers in the most northern soybean region of the USA should combine early planting, optimum RM cultivars, 457,000 seed ha−1 SR, and 31 cm RS to improve yield and profit compared to current management practices.


2002 ◽  
Vol 82 (4) ◽  
pp. 687-692 ◽  
Author(s):  
B. D. Gossen ◽  
J. J. Soroka ◽  
H. G. Najda

Little information is available on the management of turfgrass species for seed production in the Canadian prairies. The objective of these studies was to assess the impact of residue management and row spacing on seed yield under irrigation. A factorial experiment was seeded at Saskatoon, SK, in 1993 to assess the impact of burning or scalping (very close mowing with residue removal) vs. mowing, and 20- vs. 40-cm row spacing on seed yield of Kentucky bluegrass (KBG) (Poa pratensis), creeping red fescue (CRF) (Festuca rubra subsp. rubra) and creeping bentgrass (CBG) (Agrostis palustris). Also, a residue management trial on KBG was seeded at Brooks, AB, in 1993. At Saskatoon, yield was higher at 20-cm spacing across all three species in 1994, but spacing had no impact on winter survival, stand density, tiller growth or yield in subsequent years. Burning and scalping consistently resulted in earlier spring green-up, a higher proportion of fertile tillers, and higher seed yield than mowing. Even with residue management, yield declined after one harvest in CBG and CRF, and after two harvests in KBG. At Brooks, residue management had a similar impact on yield of KBG. A second trial at Brooks examined the impact of row spacing (20, 40, 60 cm) and seeding rate (0.5 to 6 kg seed ha-1) on KBG. Seed yield was highest at 40-cm spacings in 1994, at 60 cm in 1995, and at 40 to 60 cm in 1996. Seeding rate did not have a consistent effect on yield. We conclude that a combination of residue management and 20- to 40-cm spacings provide the highest, most consistent seed yields for these turfgrass species in this region. Key words: Burning, clipping, turfgrass, seed production, row spacing, Poa, Festuca, Agrostis


1996 ◽  
Vol 76 (3) ◽  
pp. 537-544 ◽  
Author(s):  
F. C. Stevenson ◽  
A. T. Wright

Seeding rate and row spacing are management practices that affect flax seed yield. Two experiments were conducted from 1988 to 1990 to determine the influence of flax seeding rates (300, 600, and 900 seeds m−2) and row spacings (9, 18, and 27 cm). One was a flax-weed interference study (three sites) and the other was a weed-free study (13 sites). In the presence of weeds, increasing seeding rate from 300 to 900 seeds m−2 improved flax seed yield by 180 kg ha−1, and reduced broadleaf weed yields by 300 kg ha−1 and grassy weed yields by 180 kg ha−1. In weed-free conditions, seed yield was not affected by seeding rate. Row spacing did not affect flax yield and had minor effects on weed yields when weeds were not controlled. When weeds were controlled, seed yield in the 9-cm row spacing was 9% (15% in the flax-weed interference study) greater than in the two wider row spacings. Seeding rate and row spacing independently influenced flax yield, and their effect was consistent among sites with weeds present, but was not consistent when weeds were controlled. Our results showed that flax seeding rate was an important component of integrated weed management. Key words: Flax, seeding rate, row spacing, weed interference


cftm ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 190040 ◽  
Author(s):  
Derek J. Potratz ◽  
Spyridon Mourtzinis ◽  
John Gaska ◽  
Joseph Lauer ◽  
Francisco J. Arriaga ◽  
...  

2010 ◽  
Vol 2 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Gholamreza ABADOUZ ◽  
Abdollah HASANZADEH GORTTAPEH ◽  
Abdol Amir RAHNEMA ◽  
Adela BEHRADFAR


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 836-839 ◽  
Author(s):  
Michael G. Patterson ◽  
Robert H. Walker ◽  
Daniel L. Colvin ◽  
Glenn Wehtje ◽  
John A. McGuire

Soybean field experiments were conducted to compare weed interference data obtained from small 2.7-m2plots to that obtained from large 11-m2plots. Soybean row spacings of 15, 30, 45, and 90 cm were used. Sicklepod, common cocklebur, and soybean biomass as dry matter were harvested from small plots 10 weeks after planting and were compared to weed biomass and soybean seed yield from the large plots. Sicklepod and common cocklebur biomass in small plots increased and soybean biomass decreased as soybean row spacing increased. Soybean biomass was not affected by row spacing when weeds were not present. Sicklepod and common cocklebur biomass in large plots increased and soybean seed yield decreased as soybean row spacing increased. Soybean seed yield was not affected by row spacing when weeds were not present. Comparison of regression coefficients for paired regression lines indicates that soybean biomass from small plots may be substituted for seed yield from large plots as a measure of sicklepod or common cocklebur interference if both size plots use the same soybean row spacing and are irrigated until harvest.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 57-61
Author(s):  
Devin J. Hammer ◽  
David E. Stoltenberg ◽  
Jed B. Colquhoun ◽  
Shawn P. Conley

Soybean yield gain over the last century has been attributed to both genetic and agronomic improvements. Recent research has characterized how breeding efforts to improve yield gain have also secondarily impacted agronomic practices such as seeding rate, planting date, and fungicide use. To our knowledge, no research has characterized the relationship between weed–soybean interference and genetic yield gain. Therefore, the objectives of this research were to determine whether newer cultivars would consistently yield higher than older cultivars under increasingly competitive environments, and whether soybean breeding efforts over time have indirectly increased soybean competitiveness. Field research was conducted in 2014, 2015, and 2016 in which 40 maturity group (MG) II soybean cultivars released between 1928 and 2013 were grown season-long with three different densities of volunteer corn (0, 2.8, and 11.2 plants m−2). Soybean seed yield of newer cultivars was higher than older cultivars at each volunteer corn density (P<0.0001). Soybean seed yield was also higher in the weed-free treatment than at low or high volunteer corn seeding rates. However, soybean cultivar release year did not affect late-season volunteer corn shoot dry biomass at either seeding rate of 2.8 or 11.2 seeds m−2. The results indicate that while soybean breeding efforts have increased yield potential over time, they have not increased soybean competitiveness with volunteer corn. These results highlight the importance of other cultural practices such as planting date and crop row spacing for weed suppression in modern soybean production systems.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-5
Author(s):  
Daniel Tadesse ◽  
Yenus Ousman ◽  
Mequanint Teshome

The area coverage and productivity of linseed decreased from time to time; even there is no crop package and recommended row spacing and seed rate at regional level due to lack of attention by researchers and also by farmers. In Ethiopia, linseed has been cultivated for two primary purposes, seed and oil use. Its production in Ethiopia country is characterized by low input, low yield and poor product quality mainly due to attitude and poor management practices such as lack of proper weed management system, poor seed and field hygiene, poor seed bed preparation, inadequate plant nutrition, inappropriate seeding rate and spacing (mostly broad casting), improper threshing ground and improper cleaning. Field experiment was carried out to evaluate the effects of seed rate and row spacing on the yield and yield components of linseed, during 2017/2018 cropping season at Dabat district, North Western Ethiopia. KULUMSA1 (CHILALO) was used as test crop. Factorial combinations of three row spacing, (20, 25, and 30 cm) and three seed rates, (40, 45 and 50kgs) were laid out in RCBD with three replications.  Data regarding different parameters were recorded from days to sowing up to different stages. Statistical analysis of data showed that most of the parameters were affected by the main effects of Seed Rates and Row spacing. The main effect of seed rate was highly significant for days maturity, thousand seed weight and harvest index of linseed. More over it was significant for days to flower and number of capsule per plant, but it was not significant to plant height and bio mass yield. The main effect of row spacing was significant for days to maturity. The interaction of seed rate and row spacing was highly significance (p<0.05) for number of primarily branch per plant and seed yield. It was not significant on number of seeds per capsule, number of capsule per plant and thousand seed weight. The main finding of this research is highest seed yield (1771 kg ha-1 ) was obtained at 40kg ha-1 x 25 cm of row spacing while the lowest seed yield (752kg ha-1) was recorded at 50 kg ha-1 x 30 cm. 40kg ha-1 and 25cm is recommended to increase yield of linseed and its components. In conclusion the effect of seed rate and row spacing affects the important yield components of linseed.


Sign in / Sign up

Export Citation Format

Share Document