Has Breeding Improved Soybean Competitiveness with Weeds?

Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 57-61
Author(s):  
Devin J. Hammer ◽  
David E. Stoltenberg ◽  
Jed B. Colquhoun ◽  
Shawn P. Conley

Soybean yield gain over the last century has been attributed to both genetic and agronomic improvements. Recent research has characterized how breeding efforts to improve yield gain have also secondarily impacted agronomic practices such as seeding rate, planting date, and fungicide use. To our knowledge, no research has characterized the relationship between weed–soybean interference and genetic yield gain. Therefore, the objectives of this research were to determine whether newer cultivars would consistently yield higher than older cultivars under increasingly competitive environments, and whether soybean breeding efforts over time have indirectly increased soybean competitiveness. Field research was conducted in 2014, 2015, and 2016 in which 40 maturity group (MG) II soybean cultivars released between 1928 and 2013 were grown season-long with three different densities of volunteer corn (0, 2.8, and 11.2 plants m−2). Soybean seed yield of newer cultivars was higher than older cultivars at each volunteer corn density (P<0.0001). Soybean seed yield was also higher in the weed-free treatment than at low or high volunteer corn seeding rates. However, soybean cultivar release year did not affect late-season volunteer corn shoot dry biomass at either seeding rate of 2.8 or 11.2 seeds m−2. The results indicate that while soybean breeding efforts have increased yield potential over time, they have not increased soybean competitiveness with volunteer corn. These results highlight the importance of other cultural practices such as planting date and crop row spacing for weed suppression in modern soybean production systems.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 605
Author(s):  
Peder K. Schmitz ◽  
Hans J. Kandel

Planting date (PD), seeding rate (SR), relative maturity (RM) of cultivars, and row spacing (RS) are primary management factors affecting soybean (Glycine max (L.) Merr.) yield. The individual and synergistic effects of PD, SR, RM, and RS on seed yield and agronomic characteristics in North Dakota were herein investigated. Early and late PD, early and late RM cultivars, two SR (408,000 and 457,000 seed ha−1), and two RS (30.5 and 61 cm) were evaluated in four total environments in 2019 and 2020. Maximizing green canopy cover prior to the beginning of flowering improved seed yield. Individual factors of early PD and narrow RS resulted in yield increase of 311 and 266 kg ha−1, respectively. The combined factors of early PD, late RM, high SR, and narrow RS improved yield by 26% and provided a $350 ha−1 partial profit over conventional practices. Canopy cover and yield had relatively weak relationships with r2 of 0.36, 0.23, 0.14, and 0.21 at the two trifoliolate, four trifoliolate, beginning of flowering, and beginning of pod formation soybean growth stages, respectively. Producers in the most northern soybean region of the USA should combine early planting, optimum RM cultivars, 457,000 seed ha−1 SR, and 31 cm RS to improve yield and profit compared to current management practices.


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


2014 ◽  
Vol 14 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Victor Mousinho Spinelli ◽  
Luiz Antônio dos Santos Dias ◽  
Rodrigo Barros Rocha ◽  
Marcos Deon Vilela Resende

Among the oilseed plants, physic nut stands out for its yield potential and for the quality of its oil for biodiesel and biokerosene production. Currently, low seed yield, uneven fruit maturation and the lack of high yielding genotypes limit the viability of this crop. Here we evaluated the yield performance of a population, structured in 16 half-sib families, in the 2nd, 3rd and 4th years after planting (2009-11). Seed yield showed variability. The families maintained their relative performance over time. Contrary to expectations, seed yield was lower in the 4th year, probably due the increased competition between plants and leafhopper (Empoasca spp) incidence. Temporal yield stability and adaptability estimates indicated a trend toward maintaining plant superiority over time, and families 7 (1059 kg ha-1) and 12 (984 kg ha-1) showed the best stability and yield performance. Physic nut has the potential for greater yield gains.


2006 ◽  
Vol 86 (2) ◽  
pp. 353-362 ◽  
Author(s):  
R. H. McKenzie ◽  
A. B. Middleton ◽  
E. Bremer

Yellow mustard (Sinapsis alba L.), brown mustard (Brassica juncea L.), and oriental mustard (B. juncea) have been grown in Alberta since the 1950s, but limited agronomic information specific for this crop is available. The objective of this study was to determine the response of mustard to fertilization, seeding date and seeding rate in southern Alberta. Field experiments were conducted at 20 field sites over a 4-yr period (1999–2002) under irrigated and dryland (fallow and stubble) conditions. Five experiments were conducted with the following treatments: (1) N fertilizer rate (0, 30, 60, 90 and 120 kg N ha-1), (2) urea placement (seed-placed and side-banded urea at rates of 0 to 120 kg N ha-1), (3) P fertilizer rate (0, 6.5, and 13.1 kg P ha-1), (4) S fertilizer rate (0, 10 and 20 kg S ha-1), and (5) seeding date (three dates at approximately 10-d intervals) and seeding rate (target plant densities of 75, 125, 175, 225, and 300 plants m-2). Experiment 1 was conducted with yellow mustard (AC Pennant), oriental mustard (Forge), brown mustard (Commercial Brown) and canola (Q2) (Brassica napus L.), while the remaining experiments were only conducted with yellow mustard. For maximum seed yield, mustard required 95 kg of available N Mg-1 of potential seed yield. Potential yields were closely related to available moisture, increasing 7 to 8 kg ha-1 for every mm increase in available moisture above a minimum moisture requirement of 90 mm. Seed-placed urea reduced plant stand at rates as low as 30 kg N ha-1 and reduced seed yield at rates of 60 to 120 kg N ha-1. Fourteen of 20 sites had a greater than 3% positive yield benefit due to P fertilizer. Mustard did not benefit from S fertilizer application. Delay in seeding by 3–4 wk, compared with seeding in late April to mid-May, reduced seed yield of yellow mustard by an average of 37%. Seed yield increased with seeding rate, but the maximum gain in seed yield due to high seeding rates was only 200 kg ha-1, with significant increases obtained only under very dry conditions. Early seeding and adequate N fertility were the most important agronomic practices for achieving high yields of mustard in southern Alberta. Key words: Sinapsis alba, Brassica juncea, yield, oil, nitrogen, phosphorus, sulfur, water-use efficiency


2017 ◽  
Vol 109 (5) ◽  
pp. 2040-2049 ◽  
Author(s):  
Spyridon Mourtzinis ◽  
Adam P. Gaspar ◽  
Seth L. Naeve ◽  
Shawn P. Conley

2006 ◽  
Vol 86 (3) ◽  
pp. 845-853 ◽  
Author(s):  
S. F. Hwang ◽  
R. L. Conner ◽  
K. F. Chang ◽  
B. D. Gossen ◽  
H. Su ◽  
...  

Mycosphaerella blight (Mycosphaerella pinodes) occurs throughout western Canada and can severely reduce field pea (Pisum sativum) seed yield. Field trials were conducted at two sites (Edmonton, AB, and Morden, MB) from 2001 to 2003 to assess the impact of seeding rate and seeding depth on blight severity. Mycosphaerella blight severity in the canopy was greater at higher seeding rates; treatments seeded at 30 plants m-2 had lower levels of disease than those seeded at more than 100 seeds m-2. However, yield potential was reduced at low seeding densities. Depth of seeding did not affect seedling density, disease severity, yield or final seed weight. In addition, field trials were conducted at Edmonton to quantify yield losses associated with mycosphaerella blight in Alberta. In trials inoculated with M. pinodes, application of a foliar fungicide (chlorothalonil) increased yield by about 20% over the unprotected control. Key words: Pisum, Mycosphaerella, fungicide, crop management, yield loss


Weed Science ◽  
1989 ◽  
Vol 37 (6) ◽  
pp. 753-760 ◽  
Author(s):  
William T. Henry ◽  
Thomas T. Bauman

The effects of interference between soybeans and common cocklebur were investigated. Common cocklebur interference reduced soybean growth at each of four sample dates during the growing season. The area of interference surrounding individual common cocklebur plants within the soybean row fluctuated over time with respect to intensity and spatial distribution. Soybean growth was significantly reduced up to 10 cm away from individual cocklebur plants at 6 weeks after planting (WAP), 30 cm at 8 WAP, 20 to 30 cm at 10 WAP, and 40 cm at 12 WAP. The maximum possible distance of cocklebur influence, determined by regression analysis, also varied during the growing season. When areas of interference from adjacent cocklebur plants overlapped, the cumulative influence was found to be additive, especially late in the growing season. Soybean interference caused a 50 to 90% reduction in the size of common cocklebur plants grown within the soybean row compared to plants grown without interference. At harvest, soybean yield was reduced up to 40 to 50 cm within the row from individual cocklebur plants. The maximum distance of interference on one side of individual cocklebur plants was 75 cm. One cocklebur plant reduced soybean yield 16.0% within 1.5 m of soybean row as the result of full-season interference. Interference of common cocklebur plants spaced 60 cm apart within the row overlapped and caused an additive reduction in soybean seed yield. Across all cocklebur treatments, there was a consistent ratio of approximately 1 kg/ha loss in soybean seed yield for each 4 kg/ha of cocklebur herbage produced.


2014 ◽  
Vol 94 (7) ◽  
pp. 1211-1218 ◽  
Author(s):  
K. F. Chang ◽  
S. F. Hwang ◽  
H. U. Ahmed ◽  
S. E. Strelkov ◽  
B. D. Gossen ◽  
...  

Chang, K. F., Hwang, S. F., Ahmed, H. U., Strelkov, S. E., Gossen, B. D., Turnbull, G. D. and Blade, S. F. 2014. Disease reaction to Fusarium avenaceum and yield losses in narrow-leafed lupin lines. Can. J. Plant Sci. 94: 1211–1218. Seedling blight and root rot caused by Fusarium avenaceum are important constraints to the expansion of lupin (Lupinus angustifolius) production in Alberta, Canada. The reaction of 19 narrow-leafed lupin lines to F. avenaceum was assessed in inoculated field trials in Alberta from 2006 to 2008. Although none of the lines were highly resistant to F. avenaceum, the lines F6RF, MLU-122 and MLU-318-1 had the smallest reduction in emergence and MLU-320 and MLU-324 had the smallest reduction in seed yield as a result of inoculation under field conditions. The stability analysis of yield revealed that lupin lines MLU-324, W12-W5, MLU-320 and MLU-318-1 were more stable in comparison to other lupin lines included in the study. Yield loss was not consistently associated with seedling emergence, likely because the seeding rate may have been higher than required to achieve the yield potential of these lines in Alberta. A companion field study was conducted at Lacombe, Alberta, in 2006 and Edmonton, Alberta, in 2007; seedling emergence and seed yield of the susceptible lupin cv. Arabella declined linearly with increasing levels of seed infestation, and the relationships were summarized using regression analysis. Seedling emergence and yield were strongly correlated.


Sign in / Sign up

Export Citation Format

Share Document