Emergency seeding of cool‐season annuals into perennial grass after fall drought

cftm ◽  
2021 ◽  
Author(s):  
Yedan V. Xiong ◽  
R. L. G. Nave ◽  
A. P. Griffith ◽  
M. P. Quinby ◽  
G. E. Bates ◽  
...  
Keyword(s):  
1998 ◽  
Vol 12 (2) ◽  
pp. 391-396 ◽  
Author(s):  
Tom D. Whitson ◽  
David W. Koch

Long-term control of downy brome with an integrated approach is needed in order to sustain range productivity. Studies were conducted to study the effectiveness of a combination of downy brome control practices. In two studies, glyphosate and paraquat were evaluated at various rates for up to three successive years for control of downy brome in rangeland. A third study evaluated the competitiveness of perennial cool-season grasses against downy brome in the absence of herbicides. Glyphosate, at 0.55 kg/ha, and 0.6 kg/ha paraquat provided selective downy brome control on rangeland when applications were combined with intensive grazing. Downy brome control was greater than 90% following two sequential years of 0.6 kg/ha paraquat at either the two- to eight-leaf stage or bloom stage at both study locations. At one study location, 0.55 kg/ha glyphosate provided 97% control after the first application at both growth stages. In the second study, control averaged greater than 92% following three sequential applications of glyphosate. When perennial cool-season grasses were seeded in the spring following fall tillage (no herbicides) and allowed to establish for three growing seasons, three of the five species were effective in reducing the reestablishment of downy brome. ‘Luna’ pubescent wheatgrass, ‘Hycrest’ crested wheatgrass, ‘Sodar’ streambank wheatgrass, ‘Bozoisky’ Russian wildrye, and ‘Critana’ thickspike wheatgrass controlled 100, 91, 85, 45, and 32% of the downy brome, respectively. Yields of perennial grass dry matter were 1,714, 1,596, 1,135, 900, and 792 kg/ha. Replacing noncompetitive annual grasses with competitive cool-season perennials will provide a longer term solution to a downy brome problem than the use of herbicides alone or with intensive grazing.


2016 ◽  
Vol 26 (4) ◽  
pp. 394-398 ◽  
Author(s):  
Tyler Cooper ◽  
Leslie L. Beck ◽  
Chase M. Straw ◽  
Gerald M. Henry

Metamifop is a postemergence aryloxyphenoxypropionic acid herbicide used for the control of annual and perennial grass weeds in cereal crops and rice (Oryza sativa L.). Previous research observed creeping bentgrass (Agrostis stolonifera L.) tolerance to applications of metamifop, suggesting utilization for the removal of encroaching bermudagrass (Cynodon Rich.) from creeping bentgrass putting greens with little to no phytotoxicity. Therefore, the objective of our research was to evaluate the efficacy of metamifop for common bermudagrass [Cynodon dactylon (L.) Pers.] control in a greenhouse environment. Experiments were conducted at the Plant and Soil Science greenhouse facility at Texas Tech University in Lubbock in 2011 and 2012. ‘Riviera’ and ‘Savannah’ common bermudagrass were seeded at 218 lb/acre into 4-inch square pots containing a soilless potting media on 26 Aug. 2011 and 14 Nov. 2011. Pots were allowed to mature in the greenhouse over a 3-month period where they were maintained at a height of 0.25 inches. Herbicide treatments were applied on 1 Dec. 2011 and 8 Feb. 2012 and consisted of metamifop at 0.18, 0.27, 0.36, or 0.45 lb/acre. A sequential application of each treatment was made on 22 Dec. 2011 and 29 Feb. 2012. A nontreated control was included for comparison. Clipping ceased after initial herbicide treatment and pots produced biomass for 3 weeks. Biomass above 0.25 inch was removed from each pot, dried, and weighed. This procedure was conducted again 3 weeks after sequential treatments. The rate of metamifop required to reduce bermudagrass growth 50% (GR50) was calculated 3 and 6 weeks after initial treatment (WAIT). Visual ratings of percent bermudagrass control were recorded weekly on a scale of 0% (no control) to 100% (completely dead bermudagrass). As metamifop rate increased, bermudagrass biomass decreased. The calculated GR50 at 3 WAIT for ‘Savannah’ and ‘Riviera’ was 0.19 and 0.14 lb/acre, respectively. Nontreated control pots exhibited 0% control and produced 0.59 to 0.83 g of biomass at 3 WAIT, regardless of cultivar. Metamifop at 0.27 to 0.45 lb/acre exhibited 96% to 100% bermudagrass control at 3 WAIT, regardless of cultivar. Bermudagrass subjected to those same treatments only produced 0.01 to 0.03 g of biomass at 3 WAIT, regardless of cultivar. The 0.18-lb/acre rate of metamifop exhibited only 9% control of ‘Savannah’ bermudagrass with 0.72 g of biomass collected, while ‘Riviera’ was controlled 41% with 0.38 g of biomass collected. The calculated GR50 at 6 WAIT for ‘Savannah’ and ‘Riviera’ was 0.13 and 0.14 lb/acre, respectively. Sequential applications of metamifop at 0.27 to 0.45 lb/acre completely controlled bermudagrass (100%) at 6 WAIT, while a sequential application at 0.18 lb/acre only controlled bermudagrass 8% to 19% at 6 WAIT, regardless of cultivar. Bermudagrass subjected to 0.18 lb/acre exhibited 0.48 to 0.56 g of biomass at 6 WAIT, regardless of cultivar. Metamifop shows potential as an alternative control option for common bermudagrass present within cool-season turfgrass species.


2017 ◽  
Vol 95 (1) ◽  
pp. 407-419
Author(s):  
F. Añez-Osuna ◽  
G. B. Penner ◽  
P. G. Jefferson ◽  
H. A. Lardner ◽  
J. J. McKinnon

2021 ◽  
Vol 99 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Kim K Mullenix ◽  
Jennifer J Tucker

Abstract Perennial grass pastures provide the basis for beef production systems across the Southeast United States. One common management practice that is widely recommended among agronomists is interseeding cool-season legumes. Legumes can serve as a complementary resource for filling in production gaps, reducing supplemental feedstuffs, reducing the need for nitrogen fertilization, increasing the nutritional quality of forage available, increase biomass production, improve animal performance, and can reduce the toxic effects of endophyte-infected tall fescue through dilution. A simulated economic analysis was developed to further the economic understanding of the cost of implementation, the subsequent animal and forage performance benefits, and net returns from the inclusion of legumes over many research trials and years. Data from 15 peer-reviewed papers was used to simulate the economic benefits of implementing this production practice. Cost of production and revenue for each paper were calculated using the 10-year average from 2010 to 2019. This analysis provides users with a further understanding of the net returns, critical breakeven areas, and return on investment that is necessary in order to successfully implement the inclusion of cool-season legumes in perennial grass-based systems.


1997 ◽  
Vol 77 (1) ◽  
pp. 75-80 ◽  
Author(s):  
R. L. Hockensmith ◽  
C. C. Sheaffer ◽  
G. C. Marten ◽  
J. L. Halgerson

Kentucky bluegrass (Poa pratensis L.) is an important constituent of many permanent pastures in the northern United States and is an important source of livestock feed, but there is a paucity of information on its forage quality. The objective of this research was to assess changes with maturity in forage quality of whole herbage, leaves, and stems of Kentucky bluegrass compared with other important cool-season forage grasses. Kentucky bluegrass, orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinaceae L.), smooth bromegrass (Bromus inermis Leyss), timothy (Phleum pratense L.), and tall fescue (Festuca arundinacea Schreb) were sampled weekly beginning in mid-May until each species reached milk stage. Kentucky bluegrass had the highest or was among the grasses with the highest average leaf percentage, and leaf, stem, and whole herbage neutral detergent fiber (NDF) and acid detergent lignin (ADL) concentrations; and lowest average whole herbage, leaf, and stem in vitro digestible dry matter (IVDDM) concentrations compared with tall growing species. Kentucky bluegrass also had the slowest rates of change in leaf and stem concentration and in whole herbage IVDDM and NDF concentrations with maturity. Leaf concentration was negatively correlated with herbage NDF and ADL concentration, but was not correlated with herbage IVDDM and CP concentration. Relative to tall growing cool season grasses, Kentucky bluegrass is leafier, but it has poorer forage digestibility. Key words: Poa pratense L., forage quality, perennial grass, leaves, stems


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2449
Author(s):  
John A. Guretzky ◽  
Daren D. Redfearn

Interseeding annual warm-season grasses into perennial cool-season grasses has the potential to increase summer forage mass and nutritive value. Knowledge of how seeding rate affects annual warm-season grass establishment, forage mass, and vegetation dynamics remains limited. From 2016–2017, we conducted a field experiment evaluating the effects of seeding rates on sorghum-sudangrass (Sorghum bicolor × S. bicolor var. sudanense) density and forage mass and on the frequency of occurrence of plant species in cool-season grass sod in Lincoln, NE. The experiment had a completely randomized design consisting of six replicates of four seeding rates [0, 14, 28, and 35 kg pure live seed (PLS) ha−1] in sod mowed at a 2.5-cm height and one unseeded, non-mowed control treatment. Sorghum-sudangrass establishment increased with seeding rate from an average of 20 to 45 plants m−2 as the seeding rate increased from 14 to 35 kg PLS ha−1. Forage mass depended on a seeding rate × harvest interaction, showing positive linear and cubic responses to seeding rate in consecutive harvests at 45 and 90 d after interseeding. To increase forage mass in perennial cool-season grass sod, producers should interseed sorghum-sudangrass with at least 28 kg PLS ha−1. One-time seedings into cool-season, perennial grass sod have no residual effects on subsequent forage mass and vegetation dynamics.


Sign in / Sign up

Export Citation Format

Share Document