scholarly journals Towards an Understanding of the Molecular Mechanisms of Variable Unnatural Base‐Pair Behavior: A Biophysical Analysis of dNaM‐dTPT3

Author(s):  
Rebekah J. Karadeema ◽  
Sydney E. Morris ◽  
Luke L. Lairson ◽  
Ramanarayanan Krishnamurthy
2015 ◽  
Author(s):  
Aleeza C Gerstein ◽  
Judith Berman

Variation is the spice of life or, in the case of evolution, variation is the necessary material on which selection can act to enable adaptation. Karyotypic variation in ploidy (the number of homologous chromosome sets) and aneuploidy (imbalance in the number of chromosomes) are fundamentally different than other types of genomic variants. Karyotypic variation emerges through different molecular mechanisms than other mutational events, and unlike mutations that alter the genome at the base pair level, rapid reversion to the wild type chromosome number is often possible. Although karyotypic variation has long been noted and discussed by biologists, interest in the importance of karyotypic variants in evolutionary processes has spiked in recent years, and much remains to be discovered about how karyotypic variants are produced and subsequently selected.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 403-403
Author(s):  
Elli Papaemmanuil ◽  
Inmaculada Rapado ◽  
Anthony M Ford ◽  
Keiran Raine ◽  
Jonathan Hinton ◽  
...  

Abstract Abstract 403 TEL-AML1 (ETV6-RUNX1) fusions are common (∼25%) in paediatric B cell precursor acute lymphoblastic leukaemia (ALL) and associated with a very favourable prognosis. Our prior studies on monozygotic twins with concordant ALL and ‘backtracking' studies using archived neonatal blood spots established that ETV6-RUNX1 fusion is usually an early or initiating mutational event arising pre-natally. Subsequent studies, have provided strong evidence that additional genetic changes are essential for the clinical development of ALL. Twin studies suggest that these additional events are most likely to be post-natal and secondary to the ETV6-RUNX1 fusion (Bateman C et al, Blood 2010). To obtain a more in depth portrait of the composite genetic events that drive this subtype of ALL, we have carried out an extensive genomic analysis of 58 cases with diagnostic (leukaemic) cell DNA paired with matched, remission sample as a source of constitutive DNA. For all 58 cases, both leukemic and remission samples were subjected to massively parallel sequencing across all protein coding exons and a subset of selected non-coding RNAs. All cases were sequenced to at least 35x sequence coverage. Likely acquired mutations were called using algorithms developed in house for single base pair substitutions, small insertions and deletions. All putative somatic mutations were validated using conventional Sanger sequencing and to allow for estimation of allelic burden we further validated all somatic calls by massively parallel pyrosequencing. More than 700 mutations were confirmed to be somatically acquired. The majority of these mutations (>500) represent non-synonymous coding changes or stop-codons. Similar to other paediatric neoplasms, each patient harboured a modest number of total mutations (n=13.5, 95% CI: 9.6–17.4). Interestingly, recurrent mutations were present in 42 genes, however the majority (n=37) were only present in two cases each. Allelic burden estimates across all confirmed somatic variant positions in a patient sample, demonstrated evidence of sub-clonal events at presentation. This is being validated by quantitative PCR and single cell analysis. Mutation signatures were profiled in respect to occurrence, frequency and sequence context. To implement a detailed characterisation of these patterns, further sequencing of the entire genome is currently under way in selected samples. To further characterise the genomes of ETV6-RUNX1+ ALL and to identify novel cryptic rearrangements, whole genome paired-end sequencing at a physical depth of at least 16x was performed on 49 cases. Paired reads were mapped to build 37 of the human reference genome. Mapping of the breakpoints to base-pair resolution demonstrated that the ETV6-RUNX1 fusion is the result of complex rearrangements involving several chromosomal events. A further series of genomic rearrangements were defined and selected for validation by conventional PCR of the breakpoint junctions in the matched sample pairs. In summary, we report the identification of a novel spectrum of somatic mutations in ETV6-RUNX1+ ALL and present the first detailed characterisation of the genomic landscape of this ALL subtype. We provide new insights into the molecular pathology of ETV6-RUNX1+ ALL and discuss the potential implications of our findings both in understanding the underlying molecular mechanisms and also its clinical management. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 54 ◽  
Author(s):  
Alberto Marin-Gonzalez ◽  
J. G. Vilhena ◽  
Ruben Perez ◽  
Fernando Moreno-Herrero

Abstract DNA dynamics can only be understood by taking into account its complex mechanical behavior at different length scales. At the micrometer level, the mechanical properties of single DNA molecules have been well-characterized by polymer models and are commonly quantified by a persistence length of 50 nm (~150 bp). However, at the base pair level (~3.4 Å), the dynamics of DNA involves complex molecular mechanisms that are still being deciphered. Here, we review recent single-molecule experiments and molecular dynamics simulations that are providing novel insights into DNA mechanics from such a molecular perspective. We first discuss recent findings on sequence-dependent DNA mechanical properties, including sequences that resist mechanical stress and sequences that can accommodate strong deformations. We then comment on the intricate effects of cytosine methylation and DNA mismatches on DNA mechanics. Finally, we review recently reported differences in the mechanical properties of DNA and double-stranded RNA, the other double-helical carrier of genetic information. A thorough examination of the recent single-molecule literature permits establishing a set of general ‘rules’ that reasonably explain the mechanics of nucleic acids at the base pair level. These simple rules offer an improved description of certain biological systems and might serve as valuable guidelines for future design of DNA and RNA nanostructures.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


Sign in / Sign up

Export Citation Format

Share Document