ChemInform Abstract: A General Way, from L-Ascorbic and D-Isoascorbic Acids, to Homochiral . alpha.-Hydroxy, α,β-Dihydroxy, and α,β-Epoxy Aldehydes, Useful Building Blocks for the Synthesis of Linear Oxygenated Fatty Acids Metabolites.

ChemInform ◽  
2010 ◽  
Vol 24 (19) ◽  
pp. no-no
Author(s):  
C. GRAVIER-PELLETIER ◽  
J. DUMAS ◽  
Y. LE MERRER ◽  
J.-C. DEPEZAY
Author(s):  
Anna de Kluijver ◽  
Klaas G.J. Nierop ◽  
Teresa M. Morganti ◽  
Martijn C. Bart ◽  
Beate M. Slaby ◽  
...  

AbstractSponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10 and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although also Δ9,19 and (yet undescribed) Δ11,21 unsaturations were identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the conception that sponges acquire building blocks from their endosymbiotic bacteria.


Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter discusses fatty acids, the building blocks of lipids, which represent a significant fraction of the total lipid pool in aquatic organisms. It explores how chain length and levels of unsaturation (number of double bonds) have been shown to be correlated to decomposition, indicating a pre- and postdepositional selective loss of short-chain and polyunsaturated fatty acids. In contrast, saturated fatty acids are more stable and typically increase in relative proportion to total fatty acids with increasing sediment depth. Polyunsaturated fatty acids (PUFAs) are predominantly used as proxies for the presence of “fresh” algal sources, although some PUFAs also occur in vascular plants and deep-sea bacteria. Thus, these biomarkers represent a very diverse group of compounds present in aquatic systems. The numerous applications of fatty acid biomarkers to identifying the sources of organic matter in lakes, rivers, estuaries, and marine ecosystems are discussed.


2020 ◽  
Vol 1 (3) ◽  
pp. 275-289
Author(s):  
Alessa Hinzmann ◽  
Selina Sophie Druhmann ◽  
Harald Gröger

Currently, investigations of polymer-building blocks made from biorenewable feedstocks such as, for example, fatty acids, are of high interest for the chemical industry. An alternative synthesis of nitrile-substituted aliphatic carboxylic acids as precursors for ω-amino acids, which are useful to produce polymers, was investigated starting from biorenewable fatty acids. By hydroformylation of unsaturated fatty acids or unsaturated acids being accessible from unsaturated fatty acids by cross-metathesis reactions, aldehydes are formed. In this work, the hydroformylation of such unsaturated acids led to the formation of the corresponding aldehydes, which were afterwards converted with hydroxylamine to aldoximes. Subsequent dehydration by an aldoxime dehydratase as a biocatalyst or by CuII acetate led to the desired nitriles. Within this work, C7-, C9- and C11-carboxylic acids with a terminal nitrile functionality as well as a branched nitrile-functionalized stearate derivative were synthesized by means of this approach. As these nitriles serve as precursors for amino acids being suitable for polymerization, this work represents an alternative synthetic access to polyamide precursors, which starts directly from unsaturated fatty acids as biorenewable resources and avoids harsh reaction conditions as well as and by-product formation.


1993 ◽  
Vol 57 (4) ◽  
pp. 611-613 ◽  
Author(s):  
Tsuneo Namai ◽  
Tadahiro Kato ◽  
Yoshihiro Yamaguchi ◽  
Toshifumi Hirukawa

2012 ◽  
Vol 20 (6) ◽  
pp. 642-649 ◽  
Author(s):  
Xin Liu ◽  
Kai Xu ◽  
Huan Liu ◽  
Hualun Cai ◽  
Zien Fu ◽  
...  

2005 ◽  
Vol 33 (5) ◽  
pp. 1182-1185 ◽  
Author(s):  
J. Garbarino ◽  
S.L. Sturley

Fatty acids and sterols are vital components of all eukaryotic cells. Both are used as building blocks for numerous cellular processes such as membrane biosynthesis or hormone production (sterols). Furthermore, these compounds elicit a variety of effects intracellularly as they can act as signalling molecules and regulate gene expression. The metabolism of fatty acids and sterols represents a very intricate network of pathways that are regulated in a precise manner in order to maintain lipid homoeostasis within a cell. Using the budding yeast Saccharomyces cerevisiae as a model system, we touch upon some of the aspects of achieving and maintaining this lipid homoeostasis.


1987 ◽  
Vol 26 (3) ◽  
pp. 745-747 ◽  
Author(s):  
Pietro Monaco ◽  
Lucio Previtera

Sign in / Sign up

Export Citation Format

Share Document