Homoeostatic systems for sterols and other lipids

2005 ◽  
Vol 33 (5) ◽  
pp. 1182-1185 ◽  
Author(s):  
J. Garbarino ◽  
S.L. Sturley

Fatty acids and sterols are vital components of all eukaryotic cells. Both are used as building blocks for numerous cellular processes such as membrane biosynthesis or hormone production (sterols). Furthermore, these compounds elicit a variety of effects intracellularly as they can act as signalling molecules and regulate gene expression. The metabolism of fatty acids and sterols represents a very intricate network of pathways that are regulated in a precise manner in order to maintain lipid homoeostasis within a cell. Using the budding yeast Saccharomyces cerevisiae as a model system, we touch upon some of the aspects of achieving and maintaining this lipid homoeostasis.

2005 ◽  
Vol 33 (5) ◽  
pp. 1170-1173 ◽  
Author(s):  
K. Liu ◽  
X. Zhang ◽  
C. Sumanasekera ◽  
R.L. Lester ◽  
R.C. Dickson

Over the past several years, studies of sphingolipid functions in the baker's yeast Saccharomyces cerevisiae have revealed that the sphingoid LCBs (long-chain bases), dihydrosphingosine and PHS (phytosphingosine), are important signalling molecules or second messengers under heat stress and during non-stressed conditions. LCBs are now recognized as regulators of AGC-type protein kinase (where AGC stands for protein kinases A, G and C) Pkh1 and Pkh2, which are homologues of mammalian phosphoinositide-dependent protein kinase 1. LCBs were previously shown to activate Pkh1 and Pkh2, which then activate the downstream protein kinase Pkc1. We have recently demonstrated that PHS stimulates Pkh1 to activate additional downstream kinases including Ypk1, Ypk2 and Sch9. We have also found that PHS acts downstream of Pkh1 and partially activates Ypk1, Ypk2 and Sch9. These kinases control a wide range of cellular processes including growth, cell wall integrity, stress resistance, endocytosis and aging. As we learn more about the cellular processes controlled by Ypk1, Ypk2 and Sch9, we will have a far greater appreciation of LCBs as second messengers.


2021 ◽  
pp. 64-81
Author(s):  
Franklin M. Harold

Cells are life’s basic building blocks, and there is no more profound question than how they came to be. What made this murky subject accessible is the invention of methods to sequence nucleic acids and proteins, and to infer evolutionary relationships from those sequences. It seems that all living things share a common ancestry in LUCA (the Last Universal Common Ancestor), a shadowy entity thought to have lived nearly 4 billion years ago. LUCA’s nature has been much debated, but she appears to have been a cell of sorts endowed with membranes, metabolic networks, a usable energy source and the machinery to express and reproduce genetic information. The earliest known event in cell history was the divergence of Archaea from Bacteria, about 3.5 billion years ago. Eukaryotic cells, more closely allied with Archaea than with Bacteria, appear much later, some 2 billion years ago. Their origin remains one of life’s mysteries, but the evidence currently favors a fusion or merger of an early archaeon with a bacterium; the latter became the ancestor of mitochondria, and played a major role in cell evolution. Eukaryotic cells of the contemporary kind emerged over hundreds of million years. Prominent events included a second instance of intracellular symbiosis, this time with a cyanobacterium, that introduced photosynthesis into the eukaryotic universe and initiated the plant lineage. Eukaryotic cells are the building blocks of all higher organisms. Just what has given the eukaryotic order an edge is yet another of life’s stubborn mysteries.


2018 ◽  
Vol 46 (5) ◽  
pp. 1063-1072 ◽  
Author(s):  
Christian Makhoul ◽  
Prajakta Gosavi ◽  
Paul A. Gleeson

An array of signalling molecules are located at the Golgi apparatus, including phosphoinositides, small GTPases, kinases, and phosphatases, which are linked to multiple signalling pathways. Initially considered to be associated predominantly with membrane trafficking, signalling pathways at the Golgi are now recognised to regulate a diverse range of higher-order functions. Many of these signalling pathways are influenced by the architecture of the Golgi. In vertebrate cells, the Golgi consists of individual stacks fused together into a compact ribbon structure and the function of this ribbon structure has been enigmatic. Notably, recent advances have identified a role for the Golgi ribbon in regulation of cellular processes. Fragmentation of the Golgi ribbon results in modulation of many signalling pathways. Various diseases and disorders, including cancer and neurodegeneration, are associated with the loss of the Golgi ribbon and the appearance of a dispersed fragmented Golgi. Here, we review the emerging theme of the Golgi as a cell sensor and highlight the relationship between the morphological status of the Golgi in vertebrate cells and the modulation of signalling networks.


2017 ◽  
Vol 61 (6) ◽  
pp. 649-661 ◽  
Author(s):  
Nina Fenouille ◽  
Anna Chiara Nascimbeni ◽  
Joëlle Botti-Millet ◽  
Nicolas Dupont ◽  
Etienne Morel ◽  
...  

Although cells are a part of the whole organism, classical dogma emphasizes that individual cells function autonomously. Many physiological and pathological conditions, including cancer, and metabolic and neurodegenerative diseases, have been considered mechanistically as cell-autonomous pathologies, meaning those that damage or defect within a selective population of affected cells suffice to produce disease. It is becoming clear, however, that cells and cellular processes cannot be considered in isolation. Best known for shuttling cytoplasmic content to the lysosome for degradation and repurposing of recycled building blocks such as amino acids, nucleotides, and fatty acids, autophagy serves a housekeeping function in every cell and plays key roles in cell development, immunity, tissue remodeling, and homeostasis with the surrounding environment and the distant organs. In this review, we underscore the importance of taking interactions with the microenvironment into consideration while addressing the cell autonomous and non-autonomous functions of autophagy between cells of the same and different types and in physiological and pathophysiological situations.


2015 ◽  
Vol 26 (22) ◽  
pp. 3920-3925 ◽  
Author(s):  
Yoshikazu Ohya ◽  
Yoshitaka Kimori ◽  
Hiroki Okada ◽  
Shinsuke Ohnuki

The demand for phenomics, a high-dimensional and high-throughput phenotyping method, has been increasing in many fields of biology. The budding yeast Saccharomyces cerevisiae, a unicellular model organism, provides an invaluable system for dissecting complex cellular processes using high-resolution phenotyping. Moreover, the addition of spatial and temporal attributes to subcellular structures based on microscopic images has rendered this cell phenotyping system more reliable and amenable to analysis. A well-designed experiment followed by appropriate multivariate analysis can yield a wealth of biological knowledge. Here we review recent advances in cell imaging and illustrate their broad applicability to eukaryotic cells by showing how these techniques have advanced our understanding of budding yeast.


2014 ◽  
Vol 15 (1) ◽  
pp. 4-18
Author(s):  
Robin E. Williamson

Understanding the genetics of hearing loss can improve the quantity and quality of the information that those who work with individuals with hearing loss can share with their patients and clients. This understanding must start with a basic understanding of genetics in general. The general concepts of genetics can then be applied to the specific genes and proteins that are part of the hearing process, disruption of which can cause hearing loss. This article starts with a description of the central principal or mantra of genetics: “DNA to RNA to Protein.” Double-stranded deoxyribonucleic acid (DNA) in the nucleus of a cell is used as a template from which ribonucleic acid (RNA) is transcribed, or expressed. RNA transcribed from DNA instructions moves from inside the cellular nucleus out into the cytoplasm where it can then translated into a protein. Proteins are the main functional components in cells. In general, they are what implement and control cellular processes. Each step in this process from DNA to RNA to protein is carefully regulated, and a small mistake or change in any component or step can make a big difference. This article finishes by describing how small changes can cause hearing loss.


2017 ◽  
Author(s):  
Niamh Mac Fhionnlaoich ◽  
Stephen Schrettl ◽  
Nicholas B. Tito ◽  
Ye Yang ◽  
Malavika Nair ◽  
...  

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase leads to the assembly of individual nanometre-sized particles into arrays of micrometre-sized aggregates, whose size and characteristic spacing can be tuned by varying the cooling rate. This fully reversible process offers hierarchical control over structural order on the molecular, nanoscopic, and microscopic level and is an interesting model system for the programmable patterning of nanocomposites with access to micrometre-sized periodicities.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1463 ◽  
Author(s):  
Vishma Pratap Sur ◽  
Marketa Kominkova ◽  
Zaneta Buchtova ◽  
Kristyna Dolezelikova ◽  
Ondrej Zitka ◽  
...  

The physical and chemical synthesis methods of quantum dots (QDs) are generally unfavorable for biological applications. To overcome this limitation, the development of a novel “green” route to produce highly-fluorescent CdSe QDs constitutes a promising substitute approach. In the present work, CdSe QDs were biosynthesized in yeast Saccharomyces cerevisiae using a novel method, where we showed for the first time that the concentration of tryptone highly affects the synthesis process. The optimum concentration of tryptone was found to be 25 g/L for the highest yield. Different methods were used to optimize the QD extraction from yeast, and the best method was found to be by denaturation at 80 °C along with an ultrasound needle. Multiple physical characterizations including transmission electron microscopy (TEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and spectrophotometry confirmed the optical features size and shape distribution of the QDs. We showed that the novel conjugate of the CdSe QDs and a cell-penetrating peptide (hecate) can detect bacterial cells very efficiently under a fluorescent microscope. The conjugate also showed strong antibacterial activity against vancomycin-resistant Staphylococcus aureus (VRSA), methicillin-resistant Staphylococcus aureus (MRSA), and Escherichia coli, which may help us to cope with the problem of rising antibiotic resistance.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Lihi Gershon ◽  
Martin Kupiec

Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.


Sign in / Sign up

Export Citation Format

Share Document