ChemInform Abstract: Reactive Intermediates: Carboxylic Acid Enols and Other Unstable Species

ChemInform ◽  
2010 ◽  
Vol 28 (10) ◽  
pp. no-no
Author(s):  
A. J. KRESGE
Author(s):  
Ziwei Liu ◽  
Long-Fei Wu ◽  
Jianfeng Xu ◽  
Claudia Bonfio ◽  
David Russell ◽  
...  

Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid-phosphoric acid anhydrides, for the synthesis of peptidyl-RNAs, peptides, RNA oligomers and primordial phospholipids. These results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity foreshadowing the modern encapsulated peptide-nucleic acid system


2019 ◽  
Author(s):  
Ziwei Liu ◽  
Long-Fei Wu ◽  
Jianfeng Xu ◽  
Claudia Bonfio ◽  
David Russell ◽  
...  

Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid-phosphoric acid anhydrides, for the synthesis of peptidyl-RNAs, peptides, RNA oligomers and primordial phospholipids. These results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity foreshadowing the modern encapsulated peptide-nucleic acid systemThis paper has been accepted by Nature Chemistry<div>https://www.nature.com/articles/s41557-020-00564-3<br></div>


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2020 ◽  
Author(s):  
Hossein Khalilian ◽  
Gino A. DiLabio

Here, we report an exquisite strategy that the B12 enzymes exploit to manipulate the reactivity of their radical intermediate (Adenosyl radical). Based on the quantum-mechanic calculations, these enzymes utilize a little known long-ranged through space quantum Coulombic effect (QCE). The QCE causes the radical to acquire an electronic structure that contradicts the Aufbau Principle: The singly-occupied molecular orbital (SOMO) is no longer the highest-occupied molecular orbital (HOMO) and the radical is unable to react with neighbouring substrates. The dynamic nature of the enzyme and its structure is expected to be such that the reactivity of the radical is not restored until it is moved into close proximity of the target substrate. We found that the hydrogen bonding interaction between the nearby conserved glutamate residue and the ribose ring of Adenosyl radical plays a crucial role in manipulating the orbital ordering


Sign in / Sign up

Export Citation Format

Share Document