The Interannual Variability of Somali Jet and its Influences on the Inter-Hemispheric Water Vapor Transport and the East Asian Summer Rainfall

2003 ◽  
Vol 46 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Huijun WANG ◽  
Feng XUE
2015 ◽  
Vol 47 (1-2) ◽  
pp. 555-565 ◽  
Author(s):  
Chao He ◽  
Bo Wu ◽  
Chunhui Li ◽  
Ailan Lin ◽  
Dejun Gu ◽  
...  

2010 ◽  
Vol 23 (12) ◽  
pp. 3316-3331 ◽  
Author(s):  
Riyu Lu ◽  
Yuanhai Fu

Abstract The authors examine the projected change in interannual variability of East Asian summer precipitation and of dominant monsoonal circulation components in the twenty-first century under scenarios A1B and A2 by analyzing the simulated results of 12 Coupled Model Intercomparison Project phase 3 (CMIP3) coupled models. Interannual standard deviation is used to depict the intensity of interannual variability. An evaluation indicates that these models can reasonably reproduce the essential features of the present-day interannual variability in both East Asian rainfall and the rainfall-related circulations. The models project an enhanced interannual variability of summer rainfall over East Asia in the twenty-first century, under both scenarios A1B and A2. Over the East Asian summer rain belt, 10 of the 12 models under scenario A1B and 9 of the 10 models under scenario A2 show enhanced variability in the twenty-first century relative to the twentieth century. The multimodel ensemble (MME) results in increased ratios of interannual standard deviation of precipitation averaged over this region of about 12% and 19% under scenarios A1B and A2, respectively. Furthermore, it is found that the interannual variability is intensified much more remarkably in comparison with mean precipitation. Two circulation factors, the western North Pacific subtropical high (WNPSH) and East Asian upper-tropospheric jet (EAJ), which are closely related to the interannual variability of East Asian summer rainfall, are also projected by the models to exhibit enhanced interannual variability in the twenty-first century. This provides more evidence for the enhancement of interannual variability in East Asian summer rainfall and implies intensified interannual variability of the whole East Asian summer monsoon system. On the other hand, the relationships of East Asian rainfall with the WNPSH and EAJ do not exhibit clear changes in the twenty-first century under scenarios A1B and A2, and there are great discrepancies in the changes of the relationships among the individual models.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haiwen Liu ◽  
Jiarui Miao ◽  
Kaijun Wu ◽  
Mengxing Du ◽  
Yuxiang Zhu ◽  
...  

Previous studies indicate that the summer (July-August) rainfall over North China has decreased since the mid-1970s due to the weakening of East Asian summer monsoon (EASM). However, this study firstly discovers the new evidences that the summer rainfall over North China had a significant increasing tendency during 1979–1996; since 1997, this increasing tendency has halted while more summer droughts occurred over North China. One important cause for the halted increasing tendency over North China is the interdecadal decrease of the westerly water vapor transport during 1997–2016 in addition to the weakened EASM. The decrease of the westerly water vapor transport during 1997–2016 was due to the interdecadal warming over Lake Baikal. The interdecadal warming in the upper troposphere at 200 hPa forced the weakening of the upper-level zonal winds since 1997, which resulted in the anomalous descending flow over the north side of North China and the halted precipitation trend in North China.


2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


2019 ◽  
Vol 32 (21) ◽  
pp. 7575-7594 ◽  
Author(s):  
Bo Sun ◽  
Huijun Wang ◽  
Botao Zhou

Abstract This study examined the interdecadal variations in the relationship between the East Asian water vapor transport (WVT) and the central and eastern tropical Pacific (CETP) sea surface temperatures (SSTs) in January during 1951–2018, focusing on the meridional WVT over East Asia, which is critical for the East Asian winter precipitation. The results indicate that before the 1980s, an increased southerly WVT over East Asia was generally associated with warm SST anomalies in the CETP during January, whereas, after the mid-1980s, an increased southerly WVT over East Asia was mostly associated with cold SST anomalies in the central tropical Pacific during January. The underlying mechanisms are discussed based on a comparison on the climate anomalies associated with the East Asian meridional WVT between the periods of 1951–79 and 1986–2018. During 1951–79, the meridional WVT over East Asia was mainly modulated by the Pacific–East Asian (PEA) teleconnection, which would induce an anomalous southerly WVT over East Asia corresponding to warm SST anomalies in the CETP. Whereas, during 1986–2018, the connection between the PEA teleconnection and the East Asian meridional WVT was weakened. The connection among the CETP SSTs, the anomalous zonal circulation over the North Pacific, and the East Asian meridional WVT was enhanced. Additionally, the connection among the CETP SSTs, the circumglobal teleconnection in the Northern Hemisphere, and the East Asian meridional WVT was enhanced. The above two enhanced connections opposed the effect of the PEA teleconnection and would induce an anomalous southerly WVT over East Asia corresponding to cold SST anomalies in the central tropical Pacific.


2019 ◽  
Vol 32 (17) ◽  
pp. 5659-5676 ◽  
Author(s):  
Biao Chen ◽  
Huiling Qin ◽  
Guixing Chen ◽  
Huijie Xue

Abstract The sea surface salinity (SSS) varies largely as a result of the evaporation–precipitation difference, indicating the source or sink of regional/global water vapor. This study identifies a relationship between the spring SSS in the tropical northwest Pacific (TNWP) and the summer rainfall of the East Asian monsoon region (EAMR) during 1980–2017. Analysis suggests that the SSS–rainfall link involves the coupled ocean–atmosphere–land processes with a multifacet evolution. In spring, evaporation and water vapor flux divergence were enhanced in some years over the TNWP where an anomalous atmospheric anticyclone was established and a high SSS was well observed. As a result, the convergence of water vapor flux and soil moisture over the EAMR was strengthened. This ocean-to-land water vapor transport pattern was sustained from spring to summer and played a leading role in the EAMR rainfall. Moreover, the change in local spring soil moisture helped to amplify the summer rainfall by modifying surface thermal conditions and precipitation systems over the EAMR. As the multifacet evolution is closely related to the large-scale ocean-to-land water vapor transport, it can be well represented by the spring SSS in the TNWP. A random forest regression algorithm was used to further evaluate the relative importance of spring SSS in predicting summer rainfall compared to other climate indices. As the SSS is now monitored routinely by satellite and the global Argo float array, it can serve as a good metric for measuring the water cycle and as a precursor for predicting the EAMR rainfall.


Sign in / Sign up

Export Citation Format

Share Document