scholarly journals Cytokine/cytokine receptor gene expression in childhood acute lymphoblastic leukemia

Cancer ◽  
2005 ◽  
Vol 103 (5) ◽  
pp. 1054-1063 ◽  
Author(s):  
Shuling Wu ◽  
Reinhard Geßner ◽  
Arend von Stackelberg ◽  
Renate Kirchner ◽  
Guenter Henze ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1959-1959
Author(s):  
Meyling H. Cheok ◽  
Cong Ding ◽  
Wenjian Yang ◽  
Somas Das ◽  
Dario Campana ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) in children is a paradigm of disseminated cancer that is curable with chemotherapy, yet current treatment fails to cure about 20% of patients, for reasons that remain unknown. In a genome-wide assessment of in vivo treatment-induced changes in gene expression in ALL cells using the Affymetrix U95A and U133A oligonucleotide microarray, we found that patients who eventually relapsed did not up-regulate expression of the pro-apoptotic beta-2 adrenergic receptor gene (ADRB2) in their ALL cells after initial treatment with methotrexate and mercaptopurine. After treatment we observed a 5-fold lower level of ADRB2 gene expression in leukemia cells of patients who ultimately relapsed. We found a common genetic polymorphism in the ADRB2 promoter that was significantly linked to high-dose methotrexate induced up-regulation in ADRB2 gene expression in ALL cells. Moreover, the ADRB2 promoter haplotype was significantly linked to poor early treatment response in ALL cells from 242 children (i.e., probability of event-free survival at two years, p=0.0275 stratified by risk groups). These findings have revealed a germline polymorphism that is linked to the early antileukemic effects of ALL chemotherapy and provide new insights into genetic determinants of ALL treatment efficacy.


Blood ◽  
2005 ◽  
Vol 105 (2) ◽  
pp. 821-826 ◽  
Author(s):  
Gunnar Cario ◽  
Martin Stanulla ◽  
Bernard M. Fine ◽  
Oliver Teuffel ◽  
Nils v. Neuhoff ◽  
...  

AbstractTreatment resistance, as indicated by the presence of high levels of minimal residual disease (MRD) after induction therapy and induction consolidation, is associated with a poor prognosis in childhood acute lymphoblastic leukemia (ALL). We hypothesized that treatment resistance is an intrinsic feature of ALL cells reflected in the gene expression pattern and that resistance to chemotherapy can be predicted before treatment. To test these hypotheses, gene expression signatures of ALL samples with high MRD load were compared with those of samples without measurable MRD during treatment. We identified 54 genes that clearly distinguished resistant from sensitive ALL samples. Genes with low expression in resistant samples were predominantly associated with cell-cycle progression and apoptosis, suggesting that impaired cell proliferation and apoptosis are involved in treatment resistance. Prediction analysis using randomly selected samples as a training set and the remaining samples as a test set revealed an accuracy of 84%. We conclude that resistance to chemotherapy seems at least in part to be an intrinsic feature of ALL cells. Because treatment response could be predicted with high accuracy, gene expression profiling could become a clinically relevant tool for treatment stratification in the early course of childhood ALL.


2010 ◽  
Vol 34 (4) ◽  
pp. 492-497 ◽  
Author(s):  
Malgorzata Labuda ◽  
Annabel Gahier ◽  
Vincent Gagné ◽  
Albert Moghrabi ◽  
Daniel Sinnett ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3345-3345
Author(s):  
Deepa Bhojwani ◽  
Jinhua Wang ◽  
Jun J Yang ◽  
Debra Morrison ◽  
Meenakshi Devidas ◽  
...  

Abstract The outcome for childhood acute lymphoblastic leukemia (ALL) following marrow relapse remains bleak in spite of numerous approaches to further intensify therapy. Understanding the biological basis of relapse and chemoresistance, as well as identifying and validating potential new targets, are the goals of our study. Previously we determined global gene expression patterns of matched diagnosis and relapse leukemic blasts in 32 patients (64 samples) with childhood B-precursor ALL using Affymetrix U133A arrays (Blood2006;108(2):711–7). We now have extended this analysis to 60 patients (120 samples). Thirty-six patients relapsed early (within 36 months of initial diagnosis), while 24 patients relapsed late. Within the TEL/AML1 subset (n=12 patients), time to relapse was inversely proportional to the correlation co-efficient of expression profiles of the diagnosis and relapse matched pair samples, suggesting that the later the relapse, the more distinct the relapse clone is from the diagnostic clone. A supervised pairwise analysis in all 60 patients identified 292 probesets that were differentially expressed between diagnosis and relapse (FDR < 10%). In a relative enrichment analysis, multiple genes mediating cell death were down-regulated at relapse (p=0.00003), suggesting that the leukemia cells had evolved mechanisms to enhance survival. These included p21, TNFPAI3, RIPK2, BCLAF1, STK17B. In concert, DNA replication genes were up-regulated at relapse (p=0.00002). Differences in pathways leading to early vs. late relapse were evident. Early relapse was characterized by an over-expression of cell cycle genes reflecting a proliferative state. At the time of relapse, a marked over-representation of genes involved in the progression through the M phase of the cell cycle was observed in early relapse compared to late relapse (p=1.3E-08). Late relapse was characterized by the over-expression of genes involved in nucleoside biosynthesis, particularly targets of antifolates (DHFR, MTHFD1, TYMS). A small number of gene expression patterns were common to both early and late relapse, including up-regulation at relapse of BIRC5 (survivin): an attractive target for therapeutic intervention. In conclusion, analysis of an expanded cohort of matched diagnosis/relapse pairs has validated and extended our previous findings that early relapse is associated with a proliferative gene expression signature. In addition we have now identified pathways operative in late relapse. Targeting these individual genes and pathways may lead to innovative strategies to treat or prevent relapsed ALL.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4178-4183 ◽  
Author(s):  
Jun J. Yang ◽  
Deepa Bhojwani ◽  
Wenjian Yang ◽  
Xiangjun Cai ◽  
Gabriele Stocco ◽  
...  

Abstract The underlying pathways that lead to relapse in childhood acute lymphoblastic leukemia (ALL) are unknown. To comprehensively characterize the molecular evolution of relapsed childhood B-precursor ALL, we used human 500K single-nucleotide polymorphism arrays to identify somatic copy number alterations (CNAs) in 20 diagnosis/relapse pairs relative to germ line. We identified 758 CNAs, 66.4% of which were less than 1 Mb, and deletions outnumbered amplifications by approximately 2.5:1. Although CNAs persisting from diagnosis to relapse were observed in all 20 cases, 17 patients exhibited differential CNA patterns from diagnosis to relapse. Of the 396 CNAs observed in 20 relapse samples, only 69 (17.4%) were novel (absent in the matched diagnosis samples). EBF1 and IKZF1 deletions were particularly frequent in this relapsed ALL cohort (25.0% and 35.0%, respectively), suggesting their role in disease recurrence. In addition, we noted concordance in global gene expression and DNA copy number changes (P = 2.2 × 10−16). Finally, relapse-specific focal deletion of MSH6 and, consequently, reduced gene expression were found in 2 of 20 cases. In an independent cohort of children with ALL, reduced expression of MSH6 was associated with resistance to mercaptopurine and prednisone, thereby providing a plausible mechanism by which this acquired deletion contributes to drug resistance at relapse.


Sign in / Sign up

Export Citation Format

Share Document