Secondary thalamic neuroinflammation after focal cortical stroke and traumatic injury mirrors corticothalamic functional connectivity

Author(s):  
Deanna Necula ◽  
Frances S. Cho ◽  
Andrea He ◽  
Jeanne T. Paz
2021 ◽  
pp. 154596832110413
Author(s):  
Michel R. T. Sinke ◽  
Geralda A. F. van Tilborg ◽  
Anu E. Meerwaldt ◽  
Caroline L. van Heijningen ◽  
Annette van der Toorn ◽  
...  

Background. Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. Objective. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. Methods. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex. Twenty-three healthy rats served as controls. Results. A reduction in the number of reconstructed fibers, a lower fractional anisotropy, and higher radial diffusivity in the ipsilesional but intact CST, reflected remote white matter degeneration. In contrast, transcallosal tract integrity remained preserved. Functional connectivity between the ipsi- and contralesional forelimb regions of the primary somatosensory cortex significantly reduced at week 8 post-stroke. Comparably, usage of the stroke-affected forelimb was normal at week 28, following significant initial impairment between day 1 and week 8 post-stroke. Conclusions. Our study shows that post-stroke motor recovery is possible despite degeneration in the CST and may be supported by intact neuronal communication between hemispheres.


2022 ◽  
pp. 1-46
Author(s):  
Margaret E. Schroeder ◽  
Danielle S. Bassett ◽  
David F. Meaney

Abstract Astrocytes communicate bidirectionally with neurons, enhancing synaptic plasticity and promoting the synchronization of neuronal microcircuits. Despite recent advances in understanding neuron-astrocyte signaling, little is known about astrocytic modulation of neuronal activity at the population level, particularly in disease or following injury. We used high-speed calcium imaging of mixed cortical cultures in vitro to determine how population activity changes after disruption of glutamatergic signaling and mechanical injury. We constructed a multilayer network model of neuron-astrocyte connectivity, which captured distinct topology and response behavior from single cell type networks. mGluR5 inhibition decreased neuronal, but did not on its own disrupt functional connectivity or network topology. In contrast, injury increased the strength, clustering, and efficiency of neuronal but not astrocytic networks, an effect that was not observed in networks pre-treated with mGluR5 inhibition. Comparison of spatial and functional community structure revealed that functional connectivity is largely independent of spatial proximity at the microscale, but mechanical injury increased the spatial-functional correlation. Finally, we found that astrocyte segments of the same cell often belong to separate functional communities based on neuronal connectivity, suggesting that astrocyte segments function as independent entities. Our findings demonstrate the utility of multilayer network models for characterizing the multiscale connectivity of two distinct but functionally dependent cell populations.


2019 ◽  
Vol 4 (3) ◽  
pp. 474-482
Author(s):  
Sarah L. Schneider

PurposeVocal fold motion impairment (VFMI) can be the result of iatrogenic or traumatic injury or may be idiopathic in nature. It can result in glottic incompetence leading to changes in vocal quality and ease. Associated voice complaints may include breathiness, roughness, diplophonia, reduced vocal intensity, feeling out of breath with talking, and vocal fatigue with voice use. A comprehensive interprofessional voice evaluation includes auditory-perceptual voice evaluation, laryngeal examination including videostroboscopy, acoustic and aerodynamic voice measures. These components provide valuable insight into laryngeal structure and function and individual voice use patterns and, in conjunction with stimulability testing, help identify candidacy for voice therapy and choice of therapeutic techniques.ConclusionA comprehensive, interprofessional evaluation of patients with VFMI is necessary to assess the role of voice therapy and develop a treatment plan. Although there is no efficacy data to support specific voice therapy techniques for treating VFMI, considerations for various techniques are provided.


2001 ◽  
Vol 13 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Vemuganti L. Raghavendra Rao ◽  
Aclan Dogan ◽  
Kellie K. Bowen ◽  
Kathryn G. Todd ◽  
Robert J. Dempsey

2017 ◽  
Vol 31 (3) ◽  
pp. 326-335 ◽  
Author(s):  
Bryce Hruska ◽  
Maria L. Pacella ◽  
Richard L. George ◽  
Douglas L. Delahanty

2009 ◽  
Vol 42 (05) ◽  
Author(s):  
R Goya-Maldonado ◽  
VI Spoormaker ◽  
N Chechko ◽  
D Höhn ◽  
K Andrade ◽  
...  

2018 ◽  
Vol 56 (01) ◽  
pp. E2-E89
Author(s):  
A Kremer ◽  
T Buchwald ◽  
M Vetter ◽  
A Dörfler ◽  
C Forster

Sign in / Sign up

Export Citation Format

Share Document