An Optimized Whole‐Mount Immunofluorescence Method for Shoot Apices

2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Thu M. Tran ◽  
Edgar Demesa‐Arevalo ◽  
Munenori Kitagawa ◽  
Marcelina Garcia‐Aguilar ◽  
Daniel Grimanelli ◽  
...  
Author(s):  
E. T. O'Toole ◽  
R. R. Hantgan ◽  
J. C. Lewis

Thrombocytes (TC), the avian equivalent of blood platelets, support hemostasis by aggregating at sites of injury. Studies in our lab suggested that fibrinogen (fib) is a requisite cofactor for TC aggregation but operates by an undefined mechanism. To study the interaction of fib with TC and to identify fib receptors on cells, fib was purified from pigeon plasma, conjugated to colloidal gold and used both to facilitate aggregation and as a receptor probe. Described is the application of computer assisted reconstruction and stereo whole mount microscopy to visualize the 3-D organization of fib receptors at sites of cell contact in TC aggregates and on adherent cells.Pigeon TC were obtained from citrated whole blood by differential centrifugation, washed with Ca++ free Hank's balanced salts containing 0.3% EDTA (pH 6.5) and resuspended in Ca++ free Hank's. Pigeon fib was isolated by precipitation with PEG-1000 and the purity assessed by SDS-PAGE. Fib was conjugated to 25nm colloidal gold by vortexing and the conjugates used as the ligand to identify fib receptors.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
J. H. Hayden

In a previous study, Allen video-enhanced constrast/differential interference constrast (AVEC-DIC) microscopy was used in conjunction with immunofluorescence microscopy to demonstrate that organelles and vesicle move in either direction along linear elements composed of microtubules. However, this study was limited in that the number of microtubules making up a linear element could not be determined. To overcome this limitation, we have used AVEC-DIC microscopy in conjunction with whole mount electron microscopy.Keratocytes from Rana pipiens were grown on glass coverslips as described elsewhere. Gold London Finder grids were Formvar- and carbon coated, and sterilized by exposure to ultraviolet light. It is important to select a Formvar film that gives a grey reflection when it is floated on water. A silver film is too thick and will detract from the image in the light microscope.


1993 ◽  
Vol 89 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Iain Simon Donnison ◽  
Dennis Francis
Keyword(s):  

2018 ◽  
Vol 34 (4) ◽  
pp. 83-88 ◽  
Author(s):  
Yu.K. Gavrilova ◽  
◽  
S.V. Generalov ◽  
E.G. Abramova ◽  
L.V. Savitskaya ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A52-A52
Author(s):  
Elen Torres ◽  
Stefani Spranger

BackgroundUnderstanding the interactions between tumor and immune cells is critical for improving current immunotherapies. Pre-clinical and clinical evidence has shown that failed T cell infiltration into lung cancer lesions might be associated with low responsiveness towards checkpoint blockade.1 For this reason, it is necessary to characterize not only the phenotype of T cells in tumor-bearing lungs but also their spatial location in the tumor microenvironment (TME). Multiplex immunofluorescence staining allows the simultaneous use of several cell markers to study the state and the spatial location of cell populations in the tissue of interest. Although this technique is usually applied to thin tissue sections (5 to 12 µm), the analysis of large tissue volumes may provide a better understanding of the spatial distribution of cells in relation to the TME. Here, we analyzed the number and spatial distribution of cytotoxic T cells and other immune cells in the TME of tumor-bearing lungs, using both 12 µm sections and whole-mount preparations imaged by confocal microscopy.MethodsLung tumors were induced in C57BL/6 mice by tail vein injection of a cancer cell line derived from KrasG12D/+ and Tp53-/- mice. Lung tissue with a diverse degree of T cell infiltration was collected after 21 days post tumor induction. Tissue was fixed in 4% PFA, followed by snap-frozen for sectioning. Whole-mount preparations were processed according to Weizhe Li et al. (2019) 2 for tissue clearing and multiplex volume imaging. T cells were labeled with CD8 and FOXP3 antibodies to identify cytotoxic or regulatory T cells, respectively. Tumor cells were labeled with a pan-Keratin antibody. Images were acquired using a Leica SP8 confocal microscope. FIJI3 and IMARIS were used for image processing.ResultsWe identified both cytotoxic and regulatory T cell populations in the TME using thin sections and whole-mount. However, using whole-mount after tissue clearing allowed us to better evaluate the spatial distribution of the T cell populations in relation to the tumor structure. Furthermore, tissue clearance facilitates the imaging of larger volumes using multiplex immunofluorescence.ConclusionsAnalysis of large lung tissue volumes provides a better understanding of the location of immune cell populations in relation to the TME and allows to study heterogeneous immune infiltration on a per-lesion base. This valuable information will improve the characterization of the TME and the definition of cancer-immune phenotypes in NSCLC.ReferencesTeng MW, et al., Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 2015;75(11): p. 2139–45.Li W, Germain RN, and Gerner MY. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat Protoc 2019;14(6): p. 1708–1733.Schindelin J, et al, Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9(7): p. 676–82.


2011 ◽  
Vol 301 (6) ◽  
pp. G1044-G1051 ◽  
Author(s):  
Jennifer E. Stanich ◽  
Simon J. Gibbons ◽  
Seth T. Eisenman ◽  
Michael R. Bardsley ◽  
Jason R. Rock ◽  
...  

Ano1 is a recently discovered Ca2+-activated Cl− channel expressed on interstitial cells of Cajal (ICC) that has been implicated in slow-wave activity in the gut. However, Ano1 is expressed on all classes of ICC, even those that do not contribute to generation of the slow wave, suggesting that Ano1 may have an alternate function in these cells. Ano1 is also highly expressed in gastrointestinal stromal tumors. Mice lacking Ano1 had fewer proliferating ICC in whole mount preparations and in culture, raising the possibility that Ano1 is involved in proliferation. Cl− channel blockers decreased proliferation in cells expressing Ano1, including primary cultures of ICC and in the pancreatic cancer-derived cell line, CFPAC-1. Cl− channel blockers had a reduced effect on Ano1(−/−) cultures, confirming that the blockers are acting on Ano1. Ki67 immunoreactivity, 5-ethynyl-2′-deoxyuridine incorporation, and cell-cycle analysis of cells grown in low-Cl− media showed fewer proliferating cells than in cultures grown in regular medium. We confirmed that mice lacking Ano1 had less phosphorylated retinoblastoma protein compared with controls. These data led us to conclude that Ano1 regulates proliferation at the G1/S transition of the cell cycle and may play a role in tumorigenesis.


Plant Methods ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Taras Pasternak ◽  
Olaf Tietz ◽  
Katja Rapp ◽  
Maura Begheldo ◽  
Roland Nitschke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document