scholarly journals Distribution and Microstructure Analysis of Ceramic Particles in the Lead-Free Solder Matrix

2020 ◽  
pp. 2000123
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi
2020 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

Abstract The Sn-3.0Ag-0.5Cu solder alloy is a prominent candidate for the Pb-free solder, and SAC305 solder is generally employed in today’s electronic enterprise. In this study, the formation of intermetallic compounds (Cu6Sn5 and Ag3Sn) at the interface, average neighbour’s particle distance, and the morphological mosaic are examined by the addition of SiC and nickel-coated silicon carbide reinforcements within Sn-3.0Ag-0.5Cu solder. Results revealed that the addition of SiC and SiC(Ni) particles are associated with a small change to the average neighbor’s particle distance and a decrease of clustering rate to a certain limit of the Sn-3.0Ag-0.5Cu solder composites. Moreover, the development of the Cu6Sn5 and the structure of the Ag3Sn are improved with the addition of SiC and Ni coated SiC.


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2007 ◽  
Vol 22 (4) ◽  
pp. 826-830 ◽  
Author(s):  
J.W. Jang ◽  
J.K. Lin ◽  
D.R. Frear ◽  
T.Y. Lee ◽  
K.N. Tu

Void formation in lead-free solder joints, away from the joint interface, has been observed after solid-state aging. These voids are attached to intermetallic precipitates in the solder matrix, especially to those that are adjacent to the layered intermetallic at the joint interface. Two potential void formation mechanisms are discussed. The mechanism proposed to describe void formation is that a flux of vacancies is created due to volume contraction during solid-state reaction. The ripening process among the intermetallics also assists this process. Using the suggested mechanisms, the void size was estimated. This phenomenon differs from the classical Kirkendall void formation because it is a nonequilibrium state of void formation and stress generation.


2015 ◽  
Vol 754-755 ◽  
pp. 166-170 ◽  
Author(s):  
Nurul Razliana Abdul Razak ◽  
Nisrin Adli ◽  
Norainiza Saud ◽  
Sayyidah Amnah Musa

The effect of Al particles addition on the microstructure and microhardness of Sn-0.7Cu-xAl lead-free solder was systematically investigated. The Sn-0.7Cu-xAl solder alloy was successfully fabricated via powder metallurgy (PM) method which consists of mixing, compaction and sintering. Results show that the crystallization of Sn occurs in two different modifications; α-Sn and β-Sn, where the formation of β-Sn able to reinforce the solder matrix. The Al particles also distributed homogeneously along the grain boundaries. The microhardness was improved by 19% as the weight percentage of the Al particles increased up to 1.0 wt.%.


2019 ◽  
Vol 16 (1) ◽  
pp. 79-94
Author(s):  
Rizk Mostafa Shalaby ◽  
Fatma Elzahraa Ibrahim ◽  
Mostafa Kamal

This work methodically concentrated on the effect of a trace amount of rare earth element terbium, Tb (0.1, 0.2, 0.3, 0.4 and 0.5 wt. %) on the properties of eutectic Sn-3.5 wt. %Ag were studied. The results indicated that addition of Tb rare earth can be refined the microstructure of the solder and intermetallic compound (IMC) Ag3Sn phase appeared in the solder matrix. Add a few quantity of rare earth Tb enhances the hardness and strength of eutectic Sn-Ag lead free solder joint. Also, results indicate that adding Tb to the eutectic Sn-3.5Ag remarkably enhances solderability, reliability, thermal and mechanical properties. It is also found that increasing in mechanical strength can depend on crystalline size refining in addition to some regular precipitates from IMC, Ag3Sn.


2020 ◽  
Vol 20 ◽  
pp. 100576 ◽  
Author(s):  
Manoj Kumar Pal ◽  
Gréta Gergely ◽  
Dániel Koncz-Horváth ◽  
Zoltán Gácsi

2005 ◽  
Vol 04 (04) ◽  
pp. 423-429 ◽  
Author(s):  
S. M. L. NAI ◽  
M. GUPTA ◽  
J. WEI

In this study, Sn - Ag - Cu based nanocomposites with carbon nanotubes (CNTs) as reinforcements were successfully synthesized via the powder metallurgy technique. Lead-free solder powders were firstly blended together with varying weight percentages of CNTs. The materials were then compacted, sintered and finally extruded at room temperature. The extruded materials were characterized for their microstructural, thermal and mechanical properties. The porosity of the nanocomposites was observed to increase with increasing weight percentages of CNTs, accordingly the density of the nanocomposites was reduced. Thermomechanical analysis of the solder nanocomposites showed that the use of CNTs as reinforcements decreased the average coefficient of thermal expansion of the solder matrix. Furthermore, the results of mechanical properties characterization revealed that the addition of CNTs aids in enhancing the microhardness and the overall strength of the nanocomposite solder. An attempt is made in the present study to correlate the variation in weight percentages of the carbon nanotubes with the properties of the resultant nanocomposite materials.


2007 ◽  
Vol 36 (12) ◽  
pp. 1630-1634 ◽  
Author(s):  
Feng Gao ◽  
Hiroshi Nishikawa ◽  
Tadashi Takemoto

2017 ◽  
Vol 898 ◽  
pp. 908-916 ◽  
Author(s):  
Ruo Da Wang ◽  
Shao Ming Zhang ◽  
Qiang Hu ◽  
Fu Wen Zhang

In this work, B (boron) was added into Sn-1.0Ag-0.5Cu (SAC105) solder alloy using mechanical alloying method in order to develop a new low-silver lead-free solder, Sn-1.0Ag-0.5Cu-xB, where B ranges from 0wt% to 0.2wt%. The melting characteristics, wettability, mechanical properties of welded joints, and microstructure of this solder were studied. The results showed that with adding B into SAC105 alloy, the melting point and melting range was not obviously changed. Although the wettability decreases with the B content increasing, the solder joints exhibited higher shear strength. As a result, the shear strength was the highest at the B content of 0.2wt%. For example, the shear strength of the Sn-1.0Ag-0.5Cu-0.2B solder was 35.12MPa, while that of the B free SAC105 solder was only 28.94MPa. Furthermore, adding B had a significant effect on grain refinement on the SAC105 solder . Observations on solder matrix and weld joints by SEM showed that the IMC thickness of solder joints with the addition of B was less than the SAC105 lead-free solder. Moreover, with the addition of B, the solder grains were refined obviously which had the effect of refining straitening, and the growing rate of brittle IMC in solder joint could be effectively reduced during soldering and aging process. Thus solder joint performance can be improved significantly.


Sign in / Sign up

Export Citation Format

Share Document