Agronomic and seed traits of high‐oleic soybean lines containing the DP‐305423‐1 transgene in four backcross populations

Crop Science ◽  
2021 ◽  
Author(s):  
Joel Hemingway ◽  
Steve R. Schnebly ◽  
Istvan Rajcan
EDIS ◽  
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Barry L. Tillman

FloRunTM ‘331’ peanut variety was developed by the University of Florida, Institute of Food and Agricultural Sciences, North Florida Research and Education Center near Marianna, Florida.  It was released in 2016 because it combines high yield potential with excellent disease tolerance. FloRunTM ‘331’ has a typical runner growth habit with a semi-prominent central stem and medium green foliage.  It has medium runner seed size with high oleic oil chemistry.


2013 ◽  
Vol 36 (8) ◽  
pp. 802-811
Author(s):  
Hui-Liang LIU ◽  
Yong-Kuan ZHANG ◽  
Dao-Yuan ZHANG ◽  
Lin-Ke YIN ◽  
Yuan-Ming ZHANG

2018 ◽  
Vol 69 (5) ◽  
pp. 1139-1144
Author(s):  
Iosif Lingvay ◽  
Adriana Mariana Bors ◽  
Livia Carmen Ungureanu ◽  
Valerica Stanoi ◽  
Traian Rus

For the purpose of using three different types of painting materials for the inner protection of the transformer vats, their behavior was studied under actual conditions of operation in the transformer (thermal stress in electro-insulating fluid based on the natural ester in contact with copper for electro-technical use and electro-insulating paper). By comparing determination of the content in furans products (HPLC technique) and gases formed (by gas-chromatography) in the electro-insulating fluid (natural ester with high oleic content) thermally aged at 130 �C to 1000 hours in closed glass vessels, it have been found that the presence the investigated painting materials lead to a change in the mechanism and kinetics of the thermo-oxidation processes. These changes are supported by oxygen dissolved in oil, what leads to decrease both to gases formation CO2, CO, H2, CH4, C2H4 and C2H6) and furans products (5-HMF, 2-FOL, 2 -FAL and 2-ACF). The painting materials investigated during the heat treatment applied did not suffer any remarkable structural changes affecting their functionality in the electro-insulating fluid based on vegetable esters.


Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

2011 ◽  
Vol 39 (No. 3) ◽  
pp. 73-83 ◽  
Author(s):  
O. Horňáková ◽  
M. Závodná ◽  
M. Žáková ◽  
J. Kraic ◽  
F. Debre

The study of diversity in common bean was based on morphological and agronomical characteristics, differentiation of collected accessions by morphological and molecular markers, detection of genetic variation, and duplicates detection in bean landraces. The analysed 82 accessions of common bean (Phaseolus vulgaris L.) were collected in the Western andEastern Carpatien as landrace mixtures. Their seeds were segregated and pooled according to their characteristics; they were further multiplicated, and introduced into the collection. An extensive variation in plant and seed traits was discovered in thirty-three morphological and agronomical characteristics. Nevertheless, some of the accessions were identical in these characteristics. Cluster analysis grouped genotypes into two main branches, reflecting the growth type, seed size parameters, and thousand-seed weight. Molecular differentiation studies were performed by multilocus polymorphism detection in microsatellite and minisatellite DNA regions. Cluster analysis based on molecular data also grouped genotypes but no linkage to morphological traits was revealed. Bean accessions with very similar or identical morphological characters were clearly distinguished by DNA banding patterns. The presence of duplicates was excluded.  


Sign in / Sign up

Export Citation Format

Share Document