scholarly journals Snapshot Wisconsin: networking community scientists and remote sensing to improve ecological monitoring and management

2021 ◽  
Author(s):  
Philip A. Townsend ◽  
John D.J. Clare ◽  
Nanfeng Liu ◽  
Jennifer L. Stenglein ◽  
Christine Anhalt‐Depies ◽  
...  
2020 ◽  
Vol 12 (8) ◽  
pp. 1312
Author(s):  
Ekaterina Sukhova ◽  
Vladimir Sukhov

Measurement and analysis of the numerous reflectance indices of plants is an effective approach for the remote sensing of plant physiological processes in agriculture and ecological monitoring. A photochemical reflectance index (PRI) plays an important role in this kind of remote sensing because it can be related to early changes in photosynthetic processes under the action of stressors (excess light, changes in temperature, drought, etc.). In particular, we previously showed that light-induced changes in PRIs could be strongly related to the energy-dependent component of the non-photochemical quenching in photosystem II. The aim of the present work was to undertake comparative analysis of the efficiency of using light-induced changes in PRIs (ΔPRIs) based on different wavelengths for the estimation of the parameters of photosynthetic light reactions (including the parameters of photosystem I). Pea plants were used in the investigation; the photosynthetic parameters were measured using the pulse-amplitude-modulated (PAM) fluorometer Dual-PAM-100 and the intensities of the reflected light were measured using the spectrometer S100. The ΔPRIs were calculated as ΔPRI(band,570), where the band was 531 nm for the typical PRI and 515, 525, 535, 545, or 555 nm for modified PRIs; 570 nm was the reference wavelength for all PRIs. There were several important results: (1) ∆PRI(525,570), ∆PRI(531,570), ∆PRI(535,570), and ∆PRI(545,570) could be used for estimation of most of the photosynthetic parameters under light only or under dark only conditions. (2) The combination of dark and light conditions decreased the efficiency of ∆PRIs for the estimation of the photosynthetic parameters; ∆PRI(535,570) and ∆PRI(545,570) had maximal efficiency under these conditions. (3) ∆PRI(515,570) and ∆PRI(525,570) mainly included the slow-relaxing component of PRI; in contrast, ∆PRI(531,570), ∆PRI(535,570), ∆PRI(545,570), and ∆PRI(555,570) mainly included the fast-relaxing component of PRI. These components were probably caused by different mechanisms.


2019 ◽  
Vol 75 ◽  
pp. 02001
Author(s):  
Olga Giniyatullina ◽  
Evgeniy Schastlivtsev ◽  
Vladimir Kovalev

The experience of solving problems of geoecological monitoring of coal mining region with the use of remote sensing data is presented. The results of control over the boundaries of coal-mining enterprises, assessment of the degree of self-growth of dumps, monitoring of the state of vegetation near objects of coal mining and dust load of the area are shown.


2020 ◽  
Vol 12 (21) ◽  
pp. 3535 ◽  
Author(s):  
Phillip B. McKenna ◽  
Alex M. Lechner ◽  
Stuart Phinn ◽  
Peter D. Erskine

The mining industry has been operating across the globe for millennia, but it is only in the last 50 years that remote sensing technology has enabled the visualization, mapping and assessment of mining impacts and landscape recovery. Our review of published literature (1970–2019) found that the number of ecologically focused remote sensing studies conducted on mine site rehabilitation increased gradually, with the greatest proportion of studies published in the 2010–2019 period. Early studies were driven exclusively by Landsat sensors at the regional and landscape scales while in the last decade, multiple earth observation and drone-based sensors across a diverse range of study locations contributed to our increased understanding of vegetation development post-mining. The Normalized Differenced Vegetation Index (NDVI) was the most common index, and was used in 45% of papers; while research that employed image classification techniques typically used supervised (48%) and manual interpretation methods (37%). Of the 37 publications that conducted error assessments, the average overall mapping accuracy was 84%. In the last decade, new classification methods such as Geographic Object-Based Image Analysis (GEOBIA) have emerged (10% of studies within the last ten years), along with new platforms and sensors such as drones (15% of studies within the last ten years) and high spatial and/or temporal resolution earth observation satellites. We used the monitoring standards recommended by the International Society for Ecological Restoration (SER) to determine the ecological attributes measured by each study. Most studies (63%) focused on land cover mapping (spatial mosaic); while comparatively fewer studies addressed complex topics such as ecosystem function and resilience, species composition, and absence of threats, which are commonly the focus of field-based rehabilitation monitoring. We propose a new research agenda based on identified knowledge gaps and the ecological monitoring tool recommended by SER, to ensure that future remote sensing approaches are conducted with a greater focus on ecological perspectives, i.e., in terms of final targets and end land-use goals. In particular, given the key rehabilitation requirement of self-sustainability, the demonstration of ecosystem resilience to disturbance and climate change should be a key area for future research.


2020 ◽  
Vol 12 (7) ◽  
pp. 2610
Author(s):  
Zhi Wang ◽  
Zhaoping Yang ◽  
Hui Shi ◽  
Fang Han ◽  
Qin Liu ◽  
...  

Monitoring the ecosystem health for world natural heritage sites is essential for protecting them and benefits the formulation of more targeted protection policies. This study used Bayanbulak world natural heritage site as a case, established a framework for assessing the ecosystem health through remote sensing based on the parameters of ecosystem vigour, organization, resilience, and services. Then, we verified the obtained results through field sampling. The results show that the ecosystem health in the overall study area had declined over time, however, the health within the property zone remained at high levels and stable. The area proportion of low health was low and primarily distributed in the buffer zone. Thus, in general, the ecosystem in the study area was healthy. Besides, the ecosystem health exhibited distinct spatial agglomeration characteristics, and the degree of agglomeration enhanced over time. In addition, the field vegetation samplings were consistent with the changes in the ecosystem health levels, therefore, the result of RS monitoring of ecosystem health were credible. Thus, this study provides a scientific basis for heritage managers to formulate suitable ecological protection policies and should aid further research on the ecological monitoring of heritage sites.


Sign in / Sign up

Export Citation Format

Share Document