scholarly journals Introduction of mammalian seed predators and the loss of an endemic flightless bird impair seed dispersal of the New Zealand tree Elaeocarpus dentatus

2018 ◽  
Vol 8 (12) ◽  
pp. 5992-6004 ◽  
Author(s):  
Joanna K. Carpenter ◽  
Dave Kelly ◽  
Elena Moltchanova ◽  
Colin F. J. O'Donnell
1993 ◽  
Vol 20 (4) ◽  
pp. 535 ◽  
Author(s):  
RJ Green

The behaviour of avian visitors to 23 species of subtropical Australian rain forest plants was observed in the Lamington and Border Ranges National Parks on the Queensland/New South Wales border to determine potentially important seed dispersers, seed predators and fruit thieves.


2012 ◽  
Vol 28 (6) ◽  
pp. 543-555 ◽  
Author(s):  
Adrian A. Barnett ◽  
Sarah A. Boyle ◽  
Liliam P. Pinto ◽  
Waldete C. Lourenço ◽  
Thais Almeida ◽  
...  

Abstract:The Neotropics house two guilds of large arboreal vertebrate seed predators: parrots and the pitheciin primates. Both have diets dominated by immature fruits. The possibility of members of the Pitheciinae (genera Cacajao, Chiropotes and Pithecia) acting as occasional seed dispersers has been mooted, but not experimentally shown. We combined primate behavioural data and seed germination data from three separate field studies in the Brazilian states of Amazonas and Pará to analyse patterns of post-consumption seed survivorship for seeds discarded by three pitheciin species (Cacajao melanocephalus ouakary, Chiropotes chiropotes and Chiropotes albinasus). We then calculated the frequency of dispersal events for four species eaten by C. m. ouakary. All three primate species dropped intact seeds while feeding, and 30.7% of 674 dropped seeds germinated ex situ. Undamaged seeds from unripe and ripe samples germinated (29.3% and 42.7%, respectively), and all three primate species carried some fruits up to 20 m from the parent tree before consuming them. Potential seed-dispersal events varied from 1 (Macrolobium acaciifolium) per fruiting cycle to more than 6500 (Duroia velutina), suggesting that there are differences in dispersal potential. In summary, although they are highly specialized seed predators, these primates may also act as important dispersers for some plant species, and effective dispersal is not restricted to ripe fruits, as immature fruits removed from a tree may continue to mature and the seeds later germinate, a much-neglected aspect of dispersal ecology. The possibility that similar events occur in parrots should be experimentally investigated.


2018 ◽  
pp. 1795-1803
Author(s):  
Adriana Guzmán ◽  
Pablo R. Stevenson

Most studies on seed dispersal in time have focused on seed dormancy and the physiological triggers for germination. However, seed dispersed by animals with low metabolic and moving rates, and long gutpassage times such as terrestrial turtles, could be considered another type of dispersal in time. This study tests the hypothesis that seeds dispersed in time may lower predation rates. We predicted that seeds deposited below parent trees after fruiting fall has finished is advantageous to minimize seed predators and should show higher survival rates. Four Amazonian plant species, Dicranostyles ampla, Oenocarpus bataua, Guatteria atabapensis and Ocotea floribunda, were tested for seed survival probabilities in two periods: during fruiting and 10-21 days after fruiting. Experiments were carried out in two biological stations located in the Colombian Amazon (Caparú and Zafire Biological Stations). Seed predation was high and mainly caused by non-vertebrates. Out of the four plant species tested, only Guatteria atabapensis supported the time escape hypothesis. For this species, seed predation by vertebrates after the fruiting period increased (from 4.1% to 9.2%) while seed predation by nonvertebrates decreased (from 54.0% to 40.2%). in contrast, seed predation by vertebrates and by non-vertebrates after the fruiting period in D. ampla increased (from 7.9% to 22.8% and from 40.4% to 50.6%, respectively), suggesting predator satiation. Results suggest that for some species dispersal in time could be advantageous to avoid some type of seed predators. Escape in time could be an additional dimension in which seeds may reach adequate sites for recruitment. Thus, future studies should be address to better understand the survival advantages given by an endozoochory time-dispersal process.


2019 ◽  
Vol 72 ◽  
pp. 153-157
Author(s):  
Trevor K. James ◽  
Michael R. Trolove ◽  
Claire A. Dowsett

Yellow bristle grass is a highly invasive annual C4 pasture weed that has spread rapidly through many New Zealand dairying regions via seed dispersal. Seven trials were conducted on roadsides infested with yellow bristle grass to evaluate natural and mower-assisted dispersal. To trap seeds, yellow sticky traps were laid out at various intervals both perpendicular to and parallel to the road. Traps were in place for 24 h in the four natural dispersal trials but only for the event in the mowing trials. Seeds on the retrieved traps were counted and the seeds caught in the mower estimated. For natural dispersal, 90% of seeds fell within 0.5 m. When mown, 90% of the seeds fell within 2 metres in the direction of mowing and 80% within 20 cm in the perpendicular direction. More importantly, a small percentage of dispersed seeds were caught in the mower and presumably could subsequently fall off anywhere. Mowing mature yellow bristle grass on the roadside will result in accelerating seed dispersal along the roadside for many metres and potentially many kilometres.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4811 ◽  
Author(s):  
Riley D. Bartel ◽  
Jennifer L. Sheppard ◽  
Ádám Lovas-Kiss ◽  
Andy J. Green

In Europe and North America waterfowl are major dispersers of aquatic and terrestrial plants, but in New Zealand their role has yet to be investigated. Mallards were introduced to New Zealand in the late 1800s, and today they are the most abundant and widespread waterfowl in the country. To assess seed dispersal, we radiomarked 284 female mallards from two study sites during the pre-breeding (June–August) and breeding (August–December) periods in 2014–2015, and examined movements that occurred within 24, 48 or 72 h when seed dispersal by endozoochory is considered likely. During June and July 2015, we collected 29 faecal samples from individual female mallards during radiomarking and 24 samples from mallard flocks. We recovered 69 intact seeds from the faecal samples and identified 12 plant taxa. Of the plant seeds identified and dispersed by mallards in this study, 40% were members of the Asteraceae family, nine plant species were alien to New Zealand, and the indigenous-status of three unidentified taxa could not be determined. Two taxa (and 9% of seeds) were germinated following gut passage: an unidentified Asteraceae andSolanum nigrum. During the pre-breeding and breeding periods, movement of females within 24 h averaged 394 m (SD = 706 m) and 222 m (SD = 605 m) respectively, with maximum distances of 3,970 m and 8,028 m. Maxima extended to 19,230 m within 48 h. Most plant species recorded are generally assumed to be self-dispersed or dispersed by water; mechanisms that provide a much lower maximum dispersal distance than mallards. The ability of mallards to disperse viable seeds up to 19 km within 48 h suggests they have an important and previously overlooked role as vectors for a variety of wetland or grassland plant species in New Zealand.


2009 ◽  
Vol 11 (4) ◽  
pp. 285-309 ◽  
Author(s):  
Michael J. Thorsen ◽  
Katharine J.M. Dickinson ◽  
Philip J. Seddon

2018 ◽  
Vol 35 (1) ◽  
pp. 43-45
Author(s):  
Carlos Camacho ◽  
Marc-Olivier Beausoleil ◽  
Julio Rabadán-González ◽  
Roxanne Richard

AbstractCaliochory, or seed dispersal by birds as nest material, has been reported for several species, but its effectiveness remains unclear in most cases. Darwin’s finches are traditionally regarded as seed predators, but the observation of two nests challenges this assumption by demonstrating that they can act as seed dispersers via caliochory. Darwin’s finches incorporate cotton-like materials into their nests, including seeds of Darwin’s cotton (Gossypium darwinii), a shrub endemic to the Galápagos (Ecuador). Bird nests typically break down after intense rainfall, so the seeds incorporated into nests might benefit from suitable conditions for germination. By simulating the germination conditions experienced over a 72-h period by cotton seeds in a naturally fallen nest, this study qualitatively confirms the long-term viability of at least a small fraction of the seeds at the surface of the nest. Darwin’s finches might therefore provide seed-dispersal services to Darwin’s cotton and possibly, other native and exotic plants of the Galápagos commonly incorporated into nests. However, larger confirmatory studies are needed.


2011 ◽  
Vol 278 (1723) ◽  
pp. 3345-3354 ◽  
Author(s):  
Debra M. Wotton ◽  
Dave Kelly

Although global declines in frugivores may disrupt seed dispersal mutualisms and inhibit plant recruitment, quantifying the likely reduction in plant regeneration has been difficult and rarely attempted. We use a manipulative factorial experiment to quantify dependence of recruitment on dispersal (i.e. fruit pulp removal and movement of seed away from parental area) in two large-seeded New Zealand tree species. Complete dispersal failure would cause a 66 to 81 per cent reduction in recruitment to the 2-year-old seedling stage, and synergistic interactions with introduced mammalian seed and seedling predators increase the reduction to 92 to 94 per cent. Dispersal failure reduced regeneration through effects on seed predation, germination and (especially) seedling survival, including distance- and density-dependent (Janzen–Connell) effects. Dispersal of both species is currently largely dependent on a single frugivore, and many fruits today remain uneaten. Present-day levels of frugivore loss and mammal seed and seedling predators result in 57 to 84 per cent fewer seedlings after 2 years. Our study demonstrates the importance of seed dispersal for local plant population persistence, and validates concerns about the community consequences of frugivore declines.


Author(s):  
Marilyn A. Norconk ◽  
Brian W. Grafton ◽  
Nancy L. Conklin-Brittain

Sign in / Sign up

Export Citation Format

Share Document