Immunogenic cell death of human ovarian cancer cells induced by cytosolic poly(I:C) leads to myeloid cell maturation and activates NK cells

2011 ◽  
Vol 41 (10) ◽  
pp. 3028-3039 ◽  
Author(s):  
Kirsten Kübler ◽  
Carola tho Pesch ◽  
Nadine Gehrke ◽  
Soheila Riemann ◽  
Juliane Daßler ◽  
...  
Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 207 ◽  
Author(s):  
Yi-Yue Wang ◽  
Jun Hyeok Kwak ◽  
Kyung-Tae Lee ◽  
Tsegaye Deyou ◽  
Young Pyo Jang ◽  
...  

The seeds of Millettia ferruginea are used in fishing, pesticides, and folk medicine in Ethiopia. Here, the anti-cancer effects of isoflavones isolated from M. ferruginea were evaluated in human ovarian cancer cells. We found that isoflavone ferrugone and 6,7-dimethoxy-3’,4’-methylenedioxy-8-(3,3-dimethylallyl)isoflavone (DMI) had potent cytotoxic effects on human ovarian cancer cell A2780 and SKOV3. Ferrugone and DMI treatment increased the sub-G1 cell population in a dose-dependent manner in A2780 cells. The cytotoxic activity of ferrugone and DMI was associated with the induction of apoptosis, as shown by an increase in annexin V-positive cells. Z-VAD-fmk, a broad-spectrum caspase inhibitor, and z-DEVD-fmk, a caspase-3 inhibitor, significantly reversed both the ferrugone and DMI-induced apoptosis, suggesting that cell death stimulated by the isoflavones is mediated by caspase-3-dependent apoptosis. Additionally, ferrugone-induced apoptosis was found to be caspase-8-dependent, while DMI-induced apoptosis was caspase-9-dependent. Notably, DMI, but not ferrugone, increased the intracellular levels of reactive oxygen species (ROS), and antioxidant N-acetyl-L-cysteine (NAC) attenuated the pro-apoptotic activity of DMI. These data suggest that DMI induced apoptotic cell death through the intrinsic pathway via ROS production, while ferrugone stimulated the extrinsic pathway in human ovarian cancer cells.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1702 ◽  
Author(s):  
Yi-Yue Wang ◽  
Kyung-Tae Lee ◽  
Myong Cheol Lim ◽  
Jung-Hye Choi

In addition to their analgesic activity, transient receptor potential vanilloid 1 (TRPV1) agonists and antagonists demonstrate profound anti-cancer activities in various human cancers. In the present study, we investigated the anti-cancer activity of a novel TRPV1 antagonist, DWP05195, and evaluated its molecular mechanism in human ovarian cancer cells. DWP05195 demonstrated potent growth inhibitory effects in all five ovarian cancer cell lines examined. DWP05195 induced apoptosis through the activation of caspase-3, -8, and -9. DWP05195 induced C/EBP homologous protein (CHOP) expression and endoplasmic reticulum (ER) stress. Sodium phenylbutyrate (4-PBA), an ER-stress inhibitor, and CHOP knockdown significantly suppressed DWP5195-induced cell death. DWP05195-enhanced CHOP expression stimulated intrinsic and extrinsic apoptotic pathways through the regulation of Bcl2-like11 (BIM), death receptor 4 (DR4), and DR5. DWP05195-induced cell death was associated with increased reactive oxygen species (ROS) levels and p38 pathway activation. Pre-treatment with the antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed DWP05195-induced CHOP expression and p38 activation. Inhibition of NADPH oxidase (NOX) through p47phox knockdown abolished DWP05195-induced CHOP expression and cell death. Taken together, the findings indicate that DWP05195 induces ER stress-induced apoptosis via the ROS-p38-CHOP pathway in human ovarian cancer cells.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129196 ◽  
Author(s):  
Fangfang Lang ◽  
Zhaoyang Qin ◽  
Fang Li ◽  
Huilin Zhang ◽  
Zhenghui Fang ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 858
Author(s):  
Young Hyun Ko ◽  
Miran Jeong ◽  
Dae Sik Jang ◽  
Jung-Hye Choi

The fruits of Schisandra chinensis (Schisandra berries) are used as health food supplements and popular food ingredients in East Asia. Lignans, major and characteristic polyphenol compounds of Schisandra berries, possess various biological activities, including hepatoprotective and anticancer effects. However, the biological activities of gomisin L1, a lignan isolated from Schisandra berries, are less to be investigated. In this study, the antitumor activity of gomisin L1 and its underlying molecular mechanism in human ovarian cancer cells were investigated. Gomisin L1 exhibited potent cytotoxic activity against A2780 and SKOV3 ovarian cancer cells. Flow cytometry analysis revealed that the growth inhibitory effects of gomisin L1 were mediated by the induction of apoptosis. Furthermore, gomisin L1 induced an increase in intracellular reactive oxygen species (ROS) levels, and the antioxidant N-acetyl cysteine significantly negated gomisin L1-induced cell death. Moreover, inhibition of NADPH oxidase (NOX) using an inhibitor and siRNA attenuated gomisin L1-induced death of, and ROS production in, human ovarian cancer cells. Taken together, these data indicate that the lignan gomisin L1 from Schisandra berries induces apoptotic cell death by regulating intracellular ROS production via NOX.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1849 ◽  
Author(s):  
Miran Jeong ◽  
Hye Kim ◽  
Jin Lee ◽  
Jung-Hye Choi ◽  
Dae Jang

Two tetrahydrofurofurano lignans (1 and 2), four phenylpropanoids (3–6), and two alkamides (7 and 8) were isolated from the EtOAc-soluble fraction of the roots of Asarum sieboldii. The chemical structures of the isolates were identified by analysis of spectroscopic data measurements, and by a comparison of their data with published values. The isolates (1, 2, 4–8) were evaluated for their cytotoxicity against human ovarian cancer cells (A2780 and SKOV3) and immortalized ovarian surface epithelial cells (IOSE80PC) using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Of the isolates, (−)-asarinin (1) exhibited the most potent cytotoxicity to both A2780 and SKOV3 cells. A propidium iodide/annexin V-fluorescein isothiocyanate (V-FITC) double staining assay showed that (−)-asarinin (1) induces apoptotic cell death in ovarian cancer cells. In addition, (−)-asarinin (1) increased the activation of caspase-3, caspase-8, and caspase-9 in ovarian cancer cells. Pretreatment with caspase inhibitors attenuated the cell death induced by (−)-asarinin (1). In conclusion, our findings show that (−)-asarinin (1) from the roots of A. sieboldii may induce caspase-dependent apoptotic cell death in human cancer cells.


Sign in / Sign up

Export Citation Format

Share Document