scholarly journals In vivo pig-a and micronucleus study of the prototypical aneugen vinblastine sulfate

2017 ◽  
Vol 59 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Svetlana L. Avlasevich ◽  
Carson Labash ◽  
Dorothea K. Torous ◽  
Jeffrey C. Bemis ◽  
James T. MacGregor ◽  
...  
Keyword(s):  
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3820-3820
Author(s):  
Kuiying Ma ◽  
Riguo Fang ◽  
Lingling Yu ◽  
Chao Li ◽  
Zhongyu Shi ◽  
...  

Abstract Hematopoietic stem cells (HSCs) serve as the origin of the hematopoietic system, with the ability to differentiate into all blood cell lineages and self-renewal to sustain the hematopoiesis throughout life. Hematopoietic stem cell transplantation (HSCT) currently represents the most effective therapeutic strategies to treat hematological and non-hematological diseases. However, limited numbers of HSCs or poor homing capabilities into the bone marrow are still major hurdles for successful HSCT. Moreover, graft failure and delayed reconstitution due to inefficient engraftment, remains an important complication because of the high morbidity and mortality. Although ex vivo expansion of HSCs has been well studied for decades, which displays huge potentials for clinical application, exploration of novel targets to improve HSC homing and engraftment will provide new insights to enhance HSCT efficacy. To explore the chemical compounds enhancing the capabilities of homing and engraftment, we used CXCR4 (CD184) as the readout bio-marker, which is considered as the most essential chemokine receptor of HSPCs interacting with CXCL12 (SDF1) secreted in BM niche to support HSPCs homing, migration, proliferation and survival. We first performed chemical screening of 139 small molecules that can increase CD184 expression on cord blood (CB) CD34 + hematopoietic stem and progenitor cells (HSPCs). We concluded that treatment of CB CD34 + HSPCs for 16 hours with Lexibulin (Lex) or Vinblastine Sulfate (VS), both of which were microtubule polymerization (MP) inhibitors, could significantly promote the CD184 expression. Next, we optimized the MP inhibitors treatment conditions including dosage, treatment duration and culture time prior to treatment. The results proved that treatment with Lex or VS for 16 hours at 1μM was the optimal conditions to significantly enhance the CD184 expression of CD34 + HPSCs and LT-HSCs (CD34 +CD90 +CD45RA -), while maintaining robust cell survival, when compared with the DMSO control group. Moreover, we found that only when HSPCs were under culture within two days prior to small molecules treatment, CD184 expression was significantly increased by MP inhibitors while maintaining high viability, compared with DMSO control group. In order to assess the in vivo repopulating potential of the CB CD34 + HSPCs post treatment with MP inhibitors, we transplanted CB-HSPCs 16 hours post-treatment with Lex and VS respectively into irradiated nonobese diabetic (NOD)/Prkdc scid/IL-2Rγ null (NPG) mice. All transplanted mice of MP inhibitors-treated groups presented efficient engraftment, in multiple immune organs at 4-16 weeks post-transplantation, suggesting greater engraftment potential than the mock group, as measured by human CD45 of total CD45. Furthermore, hematopoietic reconstitution analysis indicated that the MP inhibitors -treated cells maintained different lineage distribution in peripheral blood (PB), bone marrow (BM) and spleen. Moreover, the equivalent phenotypes of pre- and post-treatment reveal the better reconstitution by MP inhibitors was independent of HSC-enrichment, Thus, short-term MP inhibitors treatment of CB CD34 + HSPCs enhances their homing and long-term engraftment. In conclusion, we demonstrated that short-term microtubule polymerization inhibition on human CB CD34 + HSPCs could not only enhance CD184 cell surface expression but also the capabilities of in vivo human HSCs homing and reconstitution via screening chemical compounds to increase CD184 expression and the following function evaluation study. Vinblastine Sulfate and Lexbulin were applied or registered as anti-cancer drugs for clinical use. Our study also indicates that MP inhibitors pretreatment of cells possesses significant translational implications, designating MP inhibitors as promising drug candidates to facilitate clinical HSCT. Figure 1 Figure 1. Disclosures Fang: EdiGene, Inc.: Current Employment.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
Awtar Krishan

Earle's L-929 fibroblasts treated with mitosis-arresting but sub-lethal doses of vinblastine sulfate (VLB) show hypertrophy of the granular endoplasmic reticulum and annulate lamellae. Exposure of the cells to heavier doses of vincristine sulfate (VCR), a VLB-related drug, leads to the accumulation of large amounts of helical polyribosomes, Golgi membranes and crystals in the cytoplasm. In many of these cells a large number of helical polyribosomes are arranged in prominent linear rows, some of which may be up to 5 micrometers in length. Figure 1 shows a large array of helical polyribosomes near a crystalline mass (CRS) in an Earle's L-929 fibroblast exposed to VCR (5ϒ/ml.) for 3 hours At a higher magnification, as seen in figure 2, the helical polyribosomes are seen arranged in parallel rows. In favorably cut sections, a prominent backbone like "stalk" of finely granular material, measuring approximately 300Å in width is seen in close association with the linear rows of helical polyribosomes.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Sign in / Sign up

Export Citation Format

Share Document