Adsorption of malachite green from aqueous solution by naoh-modified rice husk: Fixed-bed column studies

2012 ◽  
Vol 32 (3) ◽  
pp. 633-639 ◽  
Author(s):  
Shamik Chowdhury ◽  
Papita Das Saha



2007 ◽  
Vol 141 (3) ◽  
pp. 713-718 ◽  
Author(s):  
R HAN ◽  
Y WANG ◽  
W YU ◽  
W ZOU ◽  
J SHI ◽  
...  


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.



2019 ◽  
Vol 19 (7) ◽  
pp. 1929-1937 ◽  
Author(s):  
Nguyen Chi Thanh ◽  
Boonchai Wichitsathian ◽  
Chatpet Yossapol ◽  
Watcharapol Wonglertarak ◽  
Borano Te

Abstract Arsenic-polluted water is a global concern and puts millions of people at risk of developing cancer. The improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets was investigated in batch and fixed-bed column systems. Batch studies showed that the removal rate occurred in two main phases with an equilibrium time of 52 h. The pseudo-second-order model well described the experimental data. Isotherm data were well fitted by the Langmuir–Freundlich model. The removal efficiency was significantly reduced in alkaline solution and the presence of phosphate ions. The column study revealed that the breakthrough time and saturation time increased with lower feeding flow rate, higher bed height, and lower initial adsorbate concentration. The Thomas model provided good performance for predicting the column experimental data.



2010 ◽  
Vol 658 ◽  
pp. 53-56
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of low-cost adsorbent such as rice husk fixed bed column in removing copper from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that at 10 mg/L concentration of Cu (Ⅱ) and at flow rate 5 mL/min with different bed depths such as 9, 12 and 15 cm, the breakthrough time increases from 150 to 260 min; the breakthrough time increases from 125 to 780 min with decreasing of flow rate from 15 to 5 mL/min and decreased from 260 to 50 min when initial concentration increased from 7 to 50 mg/L.



2017 ◽  
Vol 76 (7) ◽  
pp. 1895-1906 ◽  
Author(s):  
Sowmya Vilvanathan ◽  
S. Shanthakumar

The biosorption capability of Chrysanthemum indicum to remove nickel ions from aqueous solution in a fixed-bed column was examined in this study. Native C. indicum flower waste was improved for its biosorptive potential by pyrolysis to obtain its biochar form and, thereby, both raw (CIF-R) and biochar (CIF-BC) forms of the flower were used for Ni(II) removal. Fixed bed column studies were conducted to examine the influence of bed height (1.0–3.0 cm), flow rate (1.0–5.0 mL min−1) and initial metal ion concentration (25–75 mg L−1). The breakthrough curves (Cout/Cin vs time) were modelled using different dynamic adsorption models, viz. Adams-Bohart, Thomas and Yoon-Nelson model. Interpretation of the data revealed a favorable correlation with the Thomas model with higher R2 values and closer model-predicted and experimental biosorption capacity values. The equilibrium uptake capacity of CIF-R and CIF-BC for Ni(II) were found to be 14.02 and 29.44 mg g−1, respectively. Further, the column was regenerated using HCl as eluent, to desorb the adsorbed Ni(II) ions. The experimental results implied and affirmed the suitability of the biosorbents for nickel ion biosorption with its nature being favorable, efficient, and environmentally friendly.



Sign in / Sign up

Export Citation Format

Share Document