Hydrogen purification using natural zeolite‐loaded hydroxyethyl cellulose membrane

Author(s):  
Tuba Ünügül ◽  
Filiz Ugur Nigiz
Proceedings ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 7 ◽  
Author(s):  
Helena Vasconcelos ◽  
José M. M. M. de Almeida ◽  
Cristina Saraiva ◽  
Pedro A. S. Jorge ◽  
Luis Coelho

High concentration of biogenic amines (BA) is an indicator of deterioration of food and the determination of their concentration is an important method of food control. The hydrogen peroxide (H2O2) is a side product of the degradation of BAs by certain enzymes. It is presented an experimental technique grounded on chemiluminescence to measure small quantities of H2O2 with concentrations as low as 0.01%w/w up to 0.08%w/w. Luminol and cobalt hydroxide are added to hydroxyethyl cellulose to obtain an active membrane which will react with the sampling solution and the amount of total light emission is directly related to the H2O2 concentration.


2018 ◽  
Vol 15 (3) ◽  
pp. 256-262
Author(s):  
Mallikarjunagouda B. Patil ◽  
Amshumali M. K

Membrane gas separation technique is a promising technique for separation of gases. Nanoparticles (NPs) of hollow spherical silica were synthesized by the hydrolysis and condensation of tetramethylorthosilicate (TMOS). The nanocomposite membranes were prepared by dispersing hollow silica in hydroxyethylcellulose (HEC) polymeric solution and were cast as membranes by solution casting-solvent evaporation procedure. The % loading of NP’s in membrane varied from 0.5 to 2 Wt. %. The effects of experimental parameters such as gas permeability and selectivity at constant pressure were measured for gas transport properties for the prepared membranes. Under constant operating conditions of feed pressure (4.0 MPa) and membrane thickness (50 μm), the CO2 permeability was determined to be in the range 1790-3620 Barrer for nanocomposite membrane from 0.5 to 2 Wt. %, while selectivity declined from 3.7 to 3.1 due to plasticization. This made us to come to the conclusion that the membrane has a double mode of sorption effect. The membranes were characterized with FTIR to confirm the formation of compound and with SEM to study the distribution of nanoparticles in the membrane matrix.


2012 ◽  
Vol 27 (2) ◽  
pp. 129-133
Author(s):  
Yi-Fan ZHENG ◽  
Na ZHAO ◽  
Jie ZHANG ◽  
Xiao-Ye YU ◽  
Wei-Min MO
Keyword(s):  

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2269-2272 ◽  
Author(s):  
Š Cerjan-Stefanovic ◽  
M. Kaštelan-Macan ◽  
T. Filipan

Isomorphous substitution of phosphorus into a natural zeolite affords the possibility to change the overall framework charge from negative to positive. The substances so created should be used for purification of waste waters. The work describes the preparation of phosphated zeolite, their characterisation and examples of their anion exchange of NO3 on observed in deionized water, drinking water and in the solution containing varying amounts of nitrate.


Author(s):  
Reza Yazdanpanah ◽  
Eshagh Moradiyan ◽  
Rouein Halladj ◽  
Sima Askari

Aim and Objective: The research focuses on recent progress in the production of light olefins. Hence, the common catalyst of the reaction (SAPO-34) deactivates quickly because of coke formation, we reorganized the mechanism combining SAPO-34 with a natural zeolite in order to delay the deactivation time. Materials and Methods: The synthesis of nanocomposite catalyst was conducted hydrothermally using experimental design. Firstly, Clinoptilolite was modified using nitric acid in order to achieve nano scaled material. Then, the initial gel of the SAPO-34 was prepared using DEA, aluminum isopropoxide, phosphoric acid and TEOS as the organic template, sources of Aluminum, Phosphor, and Silicate, respectively. Finally, the modified zeolite was combined with SAPO-34's gel. Results: 20 different catalysts due to D-Optimal design were synthesized and the nanocomposite with 50 weight percent of SAPO-34, 4 hours Crystallization and early Clinoptilolite precipitation showed the highest relative crystallinity, partly high BET surface area and hierarchical structure. Conclusion: Different analysis illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to low price of Clinoptilolite, the new catalyst develops the economy of the process. Using this composite, according to formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as deactivation time that was improved.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Wahyu Wilopo ◽  
Septiawan Nur Haryono ◽  
Doni Prakasa Eka Putra ◽  
I Wayan Warmada ◽  
Tsuyoshi Hirajima

Development of indusrialization and urbanization not only increase economic growth but also contribute to the environmental degradation, especially contamination of heavy metals in water. In other side, there are many geological materials have capability to immobilize heavy metals. Therefore, the objective of this research is to know the maximum capacity of natural zeolite from Trembono area, Gunung Kidul regency to immobilize copper (Cu2+) from water and to understand their mechanism. This experiment was carry out by a batch test. The result showed that the maximum capacity of zeolite to immobilize Cu (qmax) is 63,69 mmolCu/kg Zeolite according to Langmuir adsorption equilibrium model. In addition, the capability to immobilize Cu will increases due to decreasing the grain size. The result of this research can be used as an alternative for waste water treatment, especially Cu. Keywords: Removal, copper (Cu2+), natural zeolite, Langmuir isotherm


Cellulose ◽  
2020 ◽  
Vol 27 (5) ◽  
pp. 2737-2756
Author(s):  
Zhi Shen ◽  
Ning Cai ◽  
Yanan Xue ◽  
Bo Yu ◽  
Jianzhi Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document