scholarly journals Study on the pore evolution law of anthracite coal under liquid nitrogen freeze‐thaw cycles based on infrared thermal imaging and nuclear magnetic resonance

2019 ◽  
Vol 7 (6) ◽  
pp. 3344-3354 ◽  
Author(s):  
Yapei Chu ◽  
Dongming Zhang
Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zheng Pan ◽  
Keping Zhou ◽  
Rugao Gao ◽  
Zhen Jiang ◽  
Chun Yang ◽  
...  

The evolution of the rock pore structure is an important factor influencing rock mechanical properties in cold regions. To study the mesoscopic evolution law of the rock pore structure under freeze-thaw weathering cycles, a freeze-thaw weathering cycle experiment was performed on red sandstone from the cold region of western China with temperatures ranging from -20°C to +20°C. The porosity, T2 spectral distribution, and magnetic resonance imaging (MRI) characteristics of the red sandstone after 0, 20, 40, 60, 80, 100, and 120 freeze-thaw weathering cycles were measured by the nondestructive detection technique nuclear magnetic resonance (NMR). The results show that the porosity of sandstone decreases first and then increases with the increase of the freeze-thaw weathering cycles and reaches the minimum at 60 of freeze-thaw weathering cycles. The evolution characteristics of porosity can be divided into three stages, namely, the abrupt decrease in porosity, the slow decrease in porosity, and the steady increase in porosity. The evolution characteristics of the T2 spectrum distribution, movable fluid porosity (MFP), and MRI images in response to the freeze-thaw weathering process are positively correlated with the porosity. Analysis of the experimental data reveals that the decrease in the porosity of the red sandstone is mainly governed by mesopores, which is related to the water swelling phenomenon of montmorillonite. Hence, the pore connectivity decreases. As the number of freeze-thaw cycles increases, the effect of the hydrophysical reaction on the porosity gradually disappears, and the frost heaving effect caused by the water-ice phase transition gradually dominates the pore evolution law of red sandstone.


2020 ◽  
Vol 10 (16) ◽  
pp. 5699
Author(s):  
Songtao Yu ◽  
Hongwei Deng ◽  
Guanglin Tian ◽  
Junren Deng

Microscopic characteristics greatly affect mechanical and physical properties as they exert vital impact on the stability and durability of materials. In this paper, widely distributed sandstone was chosen as the research object. Sandstone was treated with a coupled effect of Freeze–Thaw (F–T) weathering and acid solution, where freeze–thaw cycles were set as 0, 10, 20, 30 and 40 cycles, and the pH of the acid solution were set as 2.8, 4.2, 5.6 and 7.0, respectively. Then, nuclear magnetic resonance was applied to measure the microscopic characteristics of sandstone, then porosity, pore size distribution and permeability before the fractal dimensions were obtained and calculated. Results show that porosity increases when F–T cycles increase, and its increase grows with the pH of acid solution decrease during the first 10 F–T cycles. Macro porosity, meso porosity and micro porosity account for the largest, second largest and smallest ratio of porosity growth. Meso porosity, micro porosity and macro porosity account for the largest, second largest and smallest ratio of total porosity. Permeability increases obviously with F–T cycle increase, while acid erosion exerts little influence on permeability increment overall. Fractal dimensions of meso pores and macro pores increase with F–T cycle increase overall, and they increase with pH decrease overall. Porosity has strong exponentially correlation with permeability. Fractal dimensions of meso pores and macro pores have good linearly correlation with permeability, while correlation between porosity and fractal dimensions are not that obvious.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiajia Liu ◽  
Jianmin Hu ◽  
Gaini Jia ◽  
Jianliang Gao ◽  
Dan Wang

The microscopic pore development of most coal seams in China leads to different permeability of coal seams and different gas drainage efficiency. Representative three coal rank coal samples were selected for saturation-centrifugation observation. The microscopic pore characteristics of coal samples were measured by nuclear magnetic resonance and liquid nitrogen adsorption methods. The experimental results showed that the coal samples were subjected to saturation-centrifugation and nuclear magnetic resonance (NMR) tests. It was found that the pores of the low-rank coal (XJ-1, XJ-2) were developed at various stages, and the connectivity between the pores was good and the permeability was also good. The adsorption pores of the intermediate coal (HB-1, HB-2) and high-rank coal (ZM-1, ZM-2) were relatively developed, and the connectivity between the pores was slightly poor. The parallel coal seam samples of coals of different ranks were better than the vertical bedding. The adsorption of liquid nitrogen showed that the low-order coal had more open pores and good gas permeability; the high-order coal had more openings at one end, more ink bottles, and narrow holes, and the gas permeability was not good. Studying the micropore structure and permeability of coals of different ranks has guiding significance for mastering the law of coal seam gas storage and transportation, extracting drilling arrangements, and increasing gas drainage and reducing greenhouse effect.


Sign in / Sign up

Export Citation Format

Share Document