scholarly journals Research on the Pore Evolution of Sandstone in Cold Regions under Freeze-Thaw Weathering Cycles Based on NMR

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zheng Pan ◽  
Keping Zhou ◽  
Rugao Gao ◽  
Zhen Jiang ◽  
Chun Yang ◽  
...  

The evolution of the rock pore structure is an important factor influencing rock mechanical properties in cold regions. To study the mesoscopic evolution law of the rock pore structure under freeze-thaw weathering cycles, a freeze-thaw weathering cycle experiment was performed on red sandstone from the cold region of western China with temperatures ranging from -20°C to +20°C. The porosity, T2 spectral distribution, and magnetic resonance imaging (MRI) characteristics of the red sandstone after 0, 20, 40, 60, 80, 100, and 120 freeze-thaw weathering cycles were measured by the nondestructive detection technique nuclear magnetic resonance (NMR). The results show that the porosity of sandstone decreases first and then increases with the increase of the freeze-thaw weathering cycles and reaches the minimum at 60 of freeze-thaw weathering cycles. The evolution characteristics of porosity can be divided into three stages, namely, the abrupt decrease in porosity, the slow decrease in porosity, and the steady increase in porosity. The evolution characteristics of the T2 spectrum distribution, movable fluid porosity (MFP), and MRI images in response to the freeze-thaw weathering process are positively correlated with the porosity. Analysis of the experimental data reveals that the decrease in the porosity of the red sandstone is mainly governed by mesopores, which is related to the water swelling phenomenon of montmorillonite. Hence, the pore connectivity decreases. As the number of freeze-thaw cycles increases, the effect of the hydrophysical reaction on the porosity gradually disappears, and the frost heaving effect caused by the water-ice phase transition gradually dominates the pore evolution law of red sandstone.

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 154
Author(s):  
Marija Krstic ◽  
Julio F. Davalos ◽  
Emanuele Rossi ◽  
Stefan C. Figueiredo ◽  
Oguzhan Copuroglu

Recent studies have shown promising potential for using Glass Pozzolan (GP) as an alternative supplementary cementitious material (SCM) due to the scarcity of fly ash and slag in the United States. However, comprehensive studies on the freeze–thaw (FT) resistance and air void system of mixtures containing GP are lacking. Therefore, this study aimed to evaluate GP’s effect on FT resistance and characterize mixtures with different GP contents, both macro- and microscopically. In this study, six concrete mixes were considered: Three mixes with 20%, 30% and 40% GP as cement replacements and two other comparable mixes with 30% fly ash and 40% slag, as well as a mix with 100% Ordinary Portland cement (OPC) as a reference. Concrete samples were prepared, cured and tested according to the ASTM standards for accelerated FT resistance for 1000 cycles and corresponding dynamic modulus of elasticity (Ed). All the samples showed minimal deterioration and scaling and high F/T resistance with a durability factor of over 90%. The relationships among FT resistance parameters, air-pressured method measurements of fresh concretes and air void analysis parameters of hardened concretes were examined in this study. X-ray micro-tomography (micro-CT scan) was used to evaluate micro-cracks development after 1000 freeze–thaw cycles and to determine spatial parameters of air voids in the concretes. Pore structure properties obtained from mercury intrusion porosimetry (MIP) and N2 adsorption method showed refined pore structure for higher cement replacement with GP, indicating more gel formation (C-S-H) which was verified by thermogravimetric analysis (TGA).


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Ju ◽  
Meng Xiao ◽  
Zequan He ◽  
Pai Ning ◽  
Peng Huang

Ultra-thick hard sandstone roofs present high thickness, poor delamination, and wide caving range. The strata pressure of the working face during actual mining increases, having a significant influence on the safe mining of the working face. Especially, in the mining areas of western China, the fully mechanized mining faces with high mining height and high-strength mining are more prominent. Understanding the fractures and stress evolution characteristics of the ultra-thick hard sandstone roof during actual mining is of high significance to control the dynamic pressure on the working face. In this paper, the typical ultra-thick hard sandstone roof of the Xiaojihan coal mine was taken as an example. The structural and chemical composition characteristics were analyzed. Besides, the fracture characteristics of ultra-thick hard roof during the working face mining were analyzed. Moreover, the fracture structure consistency was verified through physical simulation and a field measurement method. Finally, the stress evolution laws in the ultra-thick hard sandstone roof fracture were studied through numerical simulation. The findings demonstrated that (1) the ultra-thick hard sandstone roof was composed of inlaid coarse minerals, which had compact structure, while the Protodyakonov hardness reached up to 3.07; (2) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof had the characteristics of brittle fracture, with a caving span of 12 m; (3) under the high-strength mining condition of fully mechanized mining face with large mining height, the ultra-thick hard sandstone roof followed the stress evolution laws that were more sensitive to the neighboring goaf. Therefore, it was necessary to reduce the fracture span or layering of ultra-thick hard sandstone roof through the manual intervention method adoption or increase either the strength of coal pillar or supporting body, to resist the impact generated during ultra-thick hard sandstone roof fracture.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


Sign in / Sign up

Export Citation Format

Share Document