High-order filtering for control volume flow simulation

2001 ◽  
Vol 37 (7) ◽  
pp. 797-835 ◽  
Author(s):  
G. De Stefano ◽  
F. M. Denaro ◽  
G. Riccardi
2012 ◽  
Vol 472-475 ◽  
pp. 1989-1994
Author(s):  
Shi Sha Zhu ◽  
Liu Tao

The current flow and pressure drop of ER valve which is a new type power control valve could be adjusted by the electric field signal directly .In this paper, the fluid power control performance of concentric cylindrical ER valve and parallel plate-type ER valve based on ER principal is comparative studied .First power control equation has been analysed, and then flow simulation of internal flow field of ER valve has been taken based on FLUENT software. The results show that with the increasing of the strength of excitation field, the flow through the two different type of ER valve decreases, the pressure drop between import and export is even greater; and the fluid power control performance of parallel plate-type ER valve is superior to concentric cylindrical ER valve under the same control volume.


2020 ◽  
Author(s):  
Neda Ebrahimi Pour ◽  
Nikhil Anand ◽  
Harald Klimach ◽  
Sabine Roller

Abstract In this work we investigate the Brinkman volume penalization technique in the context of a high-order Discontinous Galerkin method to model moving wall boundaries for compressible fluid flow simulations. High-order approximations are especially of interest as they require few degrees of freedom to represent smooth solutions accurately. This reduced memory consumption is attractive on modern computing systems where the memory bandwidth is a limiting factor. Due to their low dissipation and dispersion they are also of particular interest for aeroacoustic problems. However, a major problem for the high-order discretization is the appropriate representation of wall geometries. In this work we look at the Brinkman penalization technique, which addresses this problem and allows the representation of geometries without modifying the computational mesh. The geometry is modelled as an artificial porous medium and embedded in the equations. As the mesh is independent of the geometry with this method, it is not only well suited for highorder discretizations but also for problems where the obstacles are moving.We look into the deployment of this strategy by briefly discussing the Brinkman penalization technique and its application in our solver and investigate its behavior in fundamental one-dimensional setups, such as shock reflection at a moving wall and the formation of a shock in front of a piston. This is followed by the application to setups with two and three dimensions, illustrating the method in the presence of curved surfaces.


Author(s):  
А.В. Сентябов ◽  
А.А. Гаврилов ◽  
М.А. Кривов ◽  
А.А. Дектерев ◽  
М.Н. Притула

Рассматривается ускорение параллельных гидродинамических расчетов на кластерах с CPU- и GPU-узлами. Для тестирования используется собственный CFD-код SigmaFlow, портированный для расчетов на графических ускорителях с помощью технологии CUDA. Алгоритм моделирования течения несжимаемой жидкости основан на SIMPLE-подобной процедуре и дискретизации с помощью метода контрольного объема на неструктурированных сетках из тексаэдральных ячеек. Сравнение скорости расчета показывает высокую производительность графических ускорителей нового поколения в GPGPU-расчетах. Speedup of parallel hydrodynamic calculations on clusters with CPUs and GPUs is considered. The CFD SigmaFlow code developed by the authors and ported for GPU by means of CUDA is used in test calculations. The incompressible flow simulation is based on a SIMPLE-like procedure and on a discretization by the control volume method on unstructured hexahedral meshes. The performance evaluation shows a high efficiency of the new generation of GPUs for GPGPU calculations.


2012 ◽  
Vol 2012.47 (0) ◽  
pp. 278-279
Author(s):  
Yuichiro SUZUKI ◽  
Kanako YASUE ◽  
Keisuke SAWADA ◽  
Yousuke OGINO

Sign in / Sign up

Export Citation Format

Share Document