scholarly journals Genetic relatedness of axial and radial diffusivity indices of cerebral white matter microstructure in late middle age

2018 ◽  
Vol 39 (5) ◽  
pp. 2235-2245 ◽  
Author(s):  
Sean N. Hatton ◽  
Matthew S. Panizzon ◽  
Eero Vuoksimaa ◽  
Donald J. Hagler ◽  
Christine Fennema-Notestine ◽  
...  
2022 ◽  
Vol 15 ◽  
Author(s):  
Chase R. Figley ◽  
Md Nasir Uddin ◽  
Kaihim Wong ◽  
Jennifer Kornelsen ◽  
Josep Puig ◽  
...  

Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) are commonly used as MRI biomarkers of white matter microstructure in diffusion MRI studies of neurodevelopment, brain aging, and neurologic injury/disease. Some of the more frequent practices include performing voxel-wise or region-based analyses of these measures to cross-sectionally compare individuals or groups, longitudinally assess individuals or groups, and/or correlate with demographic, behavioral or clinical variables. However, it is now widely recognized that the majority of cerebral white matter voxels contain multiple fiber populations with different trajectories, which renders these metrics highly sensitive to the relative volume fractions of the various fiber populations, the microstructural integrity of each constituent fiber population, and the interaction between these factors. Many diffusion imaging experts are aware of these limitations and now generally avoid using FA, AD or RD (at least in isolation) to draw strong reverse inferences about white matter microstructure, but based on the continued application and interpretation of these metrics in the broader biomedical/neuroscience literature, it appears that this has perhaps not yet become common knowledge among diffusion imaging end-users. Therefore, this paper will briefly discuss the complex biophysical underpinnings of these measures in the context of crossing fibers, provide some intuitive “thought experiments” to highlight how conventional interpretations can lead to incorrect conclusions, and suggest that future studies refrain from using (over-interpreting) FA, AD, and RD values as standalone biomarkers of cerebral white matter microstructure.


2015 ◽  
Vol 207 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Tamar Green ◽  
Naama Barnea-Goraly ◽  
Mira Raman ◽  
Scott S. Hall ◽  
Amy A. Lightbody ◽  
...  

BackgroundFragile-X syndrome (FXS) is a neurodevelopmental disorder associated with intellectual disability and neurobiological abnormalities including white matter microstructural differences. White matter differences have been found relative to neurotypical individuals.AimsTo examine whether FXS white matter differences are related specifically to FXS or more generally to the presence of intellectual disability.MethodWe used voxel-based and tract-based analytic approaches to compare individuals with FXS (n = 40) with gender- and IQ-matched controls (n = 30).ResultsIndividuals with FXS had increased fractional anisotropy and decreased radial diffusivity values compared with IQ-matched controls in the inferior longitudinal, inferior fronto-occipital and uncinate fasciculi.ConclusionsThe genetic variation associated with FXS affects white matter microstructure independently of overall IQ. White matter differences, found in FXS relative to IQ-matched controls, are distinct from reported differences relative to neurotypical controls. This underscores the need to consider cognitive ability differences when investigating white matter microstructure in neurodevelopmental disorders.


2017 ◽  
Vol 21 (5) ◽  
pp. 995-1008 ◽  
Author(s):  
NANDINI C. SINGH ◽  
ARCHITH RAJAN ◽  
ARCHANA MALAGI ◽  
KEERTHI RAMANUJAN ◽  
MATTEO CANINI ◽  
...  

DTI is an established method to study cerebral white-matter microstructure. Two established measures of DTI are fractional anisotropy (FA) and mean diffusivity (MD) and both differ for bilingual and monolingual speakers. Less is known about differences in two other measures called radial (RD) and axial diffusivity (AD). We report differences in mean RD and AD-values in the right superior longitudinal fasciculus (SLF) and forceps minor between bilingual (Hindi–English) and monolingual (English) speakers as well as differences in mean FA-values in the anterior thalamic radiation, right inferior fronto-occipital and inferior longitudinal fasciculus (ILF) and mean MD-values in forceps minor and bilateral SLF. Noteworthy, a positive correlation between L2 proficiency and mean RD-values in the right SLF was observed. We suggest that changes in the geometry of white matter tracts reflect regular bilingual language experience and contend that neuroplasticity in right SLF results from demands on cognitive control for bilingual speakers.


2017 ◽  
Author(s):  
Kayle S. Sawyer ◽  
Nasim Maleki ◽  
George Papadimitriou ◽  
Nikos Makris ◽  
Marlene Oscar-Berman ◽  
...  

AbstractBackgroundExcessive alcohol consumption is associated with widespread brain damage, including abnormalities in frontal and limbic brain regions. In a prior study of neuronal circuitry connecting the frontal lobes and limbic system structures in abstinent alcoholic men, we demonstrated decreases in white matter fractional anisotropy (FA) on diffusion tensor magnetic resonance imaging (dMRI). In the present study, we examined sex differences in alcoholism-related abnormalities of white matter connectivity.MethodsdMRI scans were acquired from 49 abstinent alcoholic individuals (26 women) and 41 nonalcoholic controls (22 women). Tract-based spatial statistical tools were used to estimate regional FA of white matter tracts and to determine sex differences and their relation to measures of alcoholism history.ResultsSex-related differences in white matter connectivity were observed in association with alcoholism: Compared to nonalcoholic men, alcoholic men had diminished FA in portions of the corpus callosum, the superior longitudinal fasciculi II and III, and the arcuate fasciculus and extreme capsule. In contrast, alcoholic women had higher FA in these regions. Sex differences also were observed for correlations between corpus callosum FA and length of sobriety.ConclusionsSexual dimorphism in white matter microstructure in abstinent alcoholics may implicate underlying differences in the neurobehavioral liabilities for developing alcohol abuse disorders, or for sequelae following abuse.


2014 ◽  
Author(s):  
Xiang-zhen Kong

Diffusion-weighted Magnetic Resonance Imaging (DW-MRI) has emerged as the most popular neuroimaging technique used to depict the biological microstructural properties of human brain white matter. However, like other MRI technique, traditional DW-MRI data remains subject to head motion artifacts during scanning. For example, previous studies have indicated that, with traditional DW-MRI data, head motion artifacts significantly affect the evaluation of diffusion metrics. Actually, DW-MRI data scanned with higher sampling rate are important for accurately evaluating diffusion metrics because it allows for full-brain coverage through the acquisition of multiple slices simultaneously and more gradient directions. Here, we employed a publicly available multiband DW-MRI dataset to investigate the association between motion and diffusion metrics with the standard pipeline, tract-based spatial statistics (TBSS). The diffusion metrics used in this study included not only the commonly used metrics (i.e., FA and MD) in DW-MRI studies, but also newly proposed inter-voxel metric, local diffusion homogeneity (LDH). We found that the motion effects in FA and MD seems to be mitigated to some extent, but the effect on MD still exists. Furthermore, the effect in LDH is much more pronounced. These results indicate that researchers shall be cautious when conducting data analysis and interpretation. Finally, the motion-diffusion association is discussed.


SLEEP ◽  
2019 ◽  
Author(s):  
Desana Kocevska ◽  
Henning Tiemeier ◽  
Thom S Lysen ◽  
Marius de Groot ◽  
Ryan L Muetzel ◽  
...  

AbstractStudy ObjectivesPoor sleep may destabilize axonal integrity and deteriorate cerebral white matter. In middle-aged and older adults sleep problems increase alongside structural brain changes, but the temporal relation between these processes is poorly understood. We studied longitudinal associations between sleep and cerebral white matter microstructure.MethodsOne thousand one persons (59.3 ± 7.9 years, 55% women) were followed across 5.8 years (3.9–10.8). Total sleep time (TST, hours), sleep efficiency (SE, percentage), sleep onset latency (SOL, minutes), and wake after sleep onset (WASO, minutes) were measured at baseline using a wrist-worn actigraph. White matter microstructure (global and tract-specific fractional anisotropy [FA] and mean diffusivity [MD]) was measured twice with diffusion tensor imaging (DTI).ResultsPoor sleep was associated with worse white matter microstructure up to 7 years later but did not predict trajectories of DTI over time. Longer TST was associated with higher global FA (β = 0.06, 95% CI: 0.01 to 0.12), but not with MD. Persons with higher SE had higher global FA (β = 0.01, 95% CI: 0.002 to 0.01) and lower MD (β = −0.01, 95% CI: −0.01 to −0.0004). Consistently, those with more WASO had lower global FA (β = −0.003, 95% CI: −0.005 to −0.001) and higher MD (β = 0.002, 95% CI: 0.0004 to 0.004). Global findings seemed to be driven by microstructural alterations in the cingulum, anterior forceps of corpus callosum, projection and association tracts.ConclusionsMiddle-aged and older persons with more WASO, lower SE and shorter TST have worse microstructure of cerebral white matter. Microstructural alterations are most pronounced projection and association tracts, in the cingulum, and in the anterior forceps of corpus callosum.


Hypertension ◽  
2015 ◽  
Vol 66 (2) ◽  
pp. 317-323 ◽  
Author(s):  
Linda K. McEvoy ◽  
Christine Fennema-Notestine ◽  
Lisa T. Eyler ◽  
Carol E. Franz ◽  
Donald J. Hagler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document