scholarly journals Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases

2020 ◽  
Vol 41 (14) ◽  
pp. 4127-4147
Author(s):  
Karteek Popuri ◽  
Da Ma ◽  
Lei Wang ◽  
Mirza Faisal Beg
Author(s):  
Yong Fan ◽  
Christos Davatzikos

Diagnostic criteria for neurological and psychiatric disorders are typically based on clinical and psychometric assessment, which might not be effective for early detection of the disease onset. For brain disorders such as Alzheimer’s Disease (AD), neuroimaging can potentially play an important role in the development of imaging-based biomarkers. Following voxel-wise univariate neuroimage analysis methods, machine learning and pattern recognition based neuroimage analysis techniques have been increasingly adopted in neuroimaging studies of neurological and psychiatric disorders, aiming to provide tools that classify individuals, based on their neuroimaging scans, rather than detect statistical group difference. The machine learning based methods, optimally combining information of multiple measures derived from images, have demonstrated promising performance in diagnosis of AD and early prediction of conversion of Mild Cognitive Impairment (MCI) individuals. This chapter introduces the general framework of such techniques with a focus on structural MRI analyses and their applications to studies of AD.


2020 ◽  
Author(s):  
Noemi Massetti ◽  
Alberto Granzotto ◽  
Manuela Bomba ◽  
Stefano Delli Pizzi ◽  
Alessandra Mosca ◽  
...  

Alzheimer's disease (AD) is a neurodegenerative condition driven by a multifactorial etiology. We employed a machine learning (ML) based algorithm and the wealth of information offered by the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate the relative contribution of clinically relevant factors for identifying subjects affected by Mild Cognitive Impairment (MCI), a transitional status between healthy aging and dementia. Our ML-based Random Forest (RF) algorithm did not help predict clinical outcomes and the AD conversion of MCI subjects. On the other hand, non-converting (ncMCI) subjects were correctly classified and predicted. Two neuropsychological tests, the FAQ and ADAS13, were the most relevant features used for the classification and prediction of younger, under 70, ncMCI subjects. Structural MRI data combined with systemic parameters and the cardiovascular status were instead the most critical factors for the classification of over 70 ncMCI subjects. Our results support the notion that AD is not an organ-specific condition and results from pathological processes inside and outside the Central Nervous System.


2018 ◽  
Author(s):  
Yun Wang ◽  
Chenxiao Xu ◽  
Ji-Hwan Park ◽  
Seonjoo Lee ◽  
Yaakov Stern ◽  
...  

ABSTRACTAccurate, reliable prediction of risk for Alzheimer’s disease (AD) is essential for early, disease-modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain complementary information of neurodegenerative processes in AD. Here we tested the utility of the multimodal MRI (T1-weighted structure and diffusion MRI), combined with high-throughput brain phenotyping—morphometry and structural connectomics—and machine learning, as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (National Health Insurance Service-Ilsan Hospital [NHIS-IH]; N=211; 110 AD, 64 mild cognitive impairment [MCI], and 37 cognitively normal with subjective memory complaints [SMC]) to test the diagnostic models; and, secondly, Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2 to test the generalizability. Our machine learning models trained on the morphometric and connectome estimates (number of features=34,646) showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; AD/MCI: 97% accuracy) in NHIS-IH cohort, outperforming a benchmark model (FLAIR-based white matter hyperintensity volumes). In ADNI-2 data, the combined connectome and morphometry model showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) compared with the CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). In predicting MCI to AD progression in a smaller cohort of ADNI-2 (n=60), the morphometry model showed similar performance with 69% accuracy compared with CSF biomarker model with 70% accuracy. Our comparison of classifiers trained on structural MRI, diffusion MRI, FLAIR, and CSF biomarkers show the promising utility of the white matter structural connectomes in classifying AD and MCI in addition to the widely used structural MRI-based morphometry, when combined with machine learning.HighlightsWe showed the utility of multimodal MRI, combining morphometry and white matter connectomes, to classify the diagnosis of AD and MCI using machine learning.In predicting the progression from MCI to AD, the morphometry model showed the best performance.Two independent clinical datasets were used in this study: one for model building, the other for generalizability testing.


2016 ◽  
Vol 13 (5) ◽  
pp. 498-508 ◽  
Author(s):  
V. Vigneron ◽  
A. Kodewitz ◽  
A. M. Tome ◽  
S. Lelandais ◽  
E. Lang

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


Sign in / Sign up

Export Citation Format

Share Document