Isotopic variation in the lake water balance at the Yamdruk-tso basin, southern Tibetan Plateau

2008 ◽  
Vol 22 (17) ◽  
pp. 3386-3392 ◽  
Author(s):  
Lide Tian ◽  
Zhongfang Liu ◽  
Tongliang Gong ◽  
Changliang Yin ◽  
Wusheng Yu ◽  
...  
2014 ◽  
Vol 55 (66) ◽  
pp. 97-104 ◽  
Author(s):  
Jing Gao ◽  
Tandong Yao ◽  
Daniel Joswiak

Abstractδ18O measurements based on systematic sampling and isotopic modeling have been adopted to study the controls of stable isotopes in lake water in two lake basins (lakes Yamdrok-tso and Puma Yum-tso) at two different elevations on the southern Tibetan Plateau. Temporally, δ18O values in precipitation and lake water display a seasonal fluctuation in both lakes. Spatially, δ18O values in the two lake basins increase by 10% from the termini of glaciers to the lake shores, by ∽1% from the lake shores to the lake center and by 0.4% from the water surface to depth in these lakes. The clear annual δ18O variations indicate that lake water mixes sufficiently in a short time. Model results show that glacial meltwater and surface lake-water temperature are not the dominant factors in the balance process of stable isotopes in lake water. Equilibrium δ18O values decrease by 0.8% for Yamdrok-tso lake and 0.6% for Puma Yum-tso lake when glacial meltwater contributions to these lakes shrink by 60%. δ18O ratios increase rapidly during the initial stages and take a longer time to approach the equilibrium value.


2016 ◽  
Vol 52 (4-5) ◽  
pp. 427-442 ◽  
Author(s):  
Dagnachew Legesse Belachew ◽  
George Leavesley ◽  
Olaf David ◽  
Dave Patterson ◽  
Pradeep Aggarwal ◽  
...  

2015 ◽  
Vol 61 (227) ◽  
pp. 447-460 ◽  
Author(s):  
Gao Tanguang ◽  
Kang Shichang ◽  
Lan Cuo ◽  
Zhang Tingjun ◽  
Zhang Guoshuai ◽  
...  

AbstractRunoff estimation in high-altitude glacierized basins is an important issue on the Tibetan Plateau. To investigate glacier mass balance, runoff and water balance in the Qugaqie basin and Zhadang sub-basin in the southern Tibetan Plateau, two glacier models and three snow models were integrated into the spatially distributed hydrological model JAMS/J2K. The results showed that the temperature index method simulated glacier runoff better than the degree-day factor method. The simulated glacier melt volume in the Qugaqie basin in 2006, 2007 and 2008 contributed 58%, 50% and 41%, respectively, to its total runoff. In the Zhadang basin, the glacier melt volume contributed 78% and 66% to its runoff during 2007 and 2008, respectively. Compared with the observation results, the simulated glacier mass balance showed similar variations with slightly higher values, indicating an underestimation of glacier melt volume. The water balance simulation in the upstream areas (705–874 mm) was comparable to that in the downstream areas (1051–1502 mm) and generally lower than the observed results. In both basins, the glacier mass-balance simulation was relatively accurate in the melt season compared to the other seasons.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1469
Author(s):  
Alemu Yenehun ◽  
Mekete Dessie ◽  
Mulugeta Azeze ◽  
Fenta Nigate ◽  
Ashebir Sewale Belay ◽  
...  

The Lake Tana Basin, comprising the largest natural lake in Ethiopia, is the source and the uppermost part of the Upper Blue Nile Basin. In this review paper, research papers, mainly on the rainfall-runoff modeling and lake water balance, and on the hydrogeology, have been reviewed. The earlier water balance estimation attempts used simple conceptual and statistical approaches and calculate on a monthly timescale. More recent research has been using advanced semi-physically or physically based distributed hydrological models. Accordingly, mean annual precipitation over the lake was estimated in the range 36.1–53.1%; lake evaporation at 45.3–57.5%; river inflow (all gauged and estimated ungauged) at 43.6–63.9%; and river (lake) water outflow at 0–9.2%. With the few isotope studies, groundwater inflow and outflow are found insignificant. Different studies had estimated groundwater recharge, ranging from 57 mm to 850 mm. The basin has a heterogenous aquifer system consisting of different volcanic rocks and alluvio-lacustrine sediments. Generally, groundwater with low TDS, Ca–Mg–HCO3 type, isotopically relatively enriched, and high TDS, Na–HCO3 type, isotopically relatively depleted, water types have been identified. In this paper, major research gaps such as aquifer hydraulic characterization, surface-groundwater interaction, groundwater flow and groundwater balance have been identified. Hence, future research shall focus on the groundwater resources, so that existing surface water studies are updated and future water usage options are explored.


2021 ◽  
Vol 593 ◽  
pp. 125886
Author(s):  
Yike Li ◽  
Lide Tian ◽  
Gabriel J. Bowen ◽  
Qinglong Wu ◽  
Wenlei Luo ◽  
...  

2020 ◽  
Vol 12 (9) ◽  
pp. 3541
Author(s):  
Balati Maihemuti ◽  
Tayierjiang Aishan ◽  
Zibibula Simayi ◽  
Yilinuer Alifujiang ◽  
Shengtian Yang

Managing lake water levels from an ecological perspective has become an urgent issue in recent years in efforts to protect, conserve, and restore lake eco-environments. In this study, we considered the actual situation of Ebinur Lake basin to develop a lake water balance model using a System Dynamics (SD) method. The objective of this study is based on the lake water balance model to sufficiently understand the variation and relationship between the lake depth–area–volume. We combined field investigations and hydrological data analysis to expose the major factors affecting lake water level fluctuations (WLFs), as well as the impact of WLFs on lake eco-environments. All with the aim of providing a theoretical basis to manage Ebinur Lake ecosystems for conservation and restoration. The main findings of this study include: (I) The model’s calculation results agree with the observation value, as the monthly lake surface area was used to validate the model. (II) The factors influencing the dynamic changes in the water level of the lake are ranked in ascending order (from the lowest to the highest) as follows: Precipitation, groundwater recharge, evaporation, river inflow. (III) Fluctuations in water level play a significant role in lake shoreline displacement variation, and when the lake’s water level drops below 1 m, the surface area of the water body decreases to approximately 106 km2. (IV) The magnitude and frequency of WLFs drive major differences in the ecology of lake littoral zones, influencing not only the structure and functioning of benthic assemblages but also littoral habitat structure. These results established a quantitative linkage between hydrological variables and ecosystem health for the Ebinur Lake wetlands. These findings could be widely used in managing the Ebinur Lake basin as well as other similar water bodies, and could provide a useful tool for managing lake ecosystems for conservation and restoration.


Author(s):  
Joy Bhattacharjee ◽  
Mehedi Rabbil ◽  
Nasim Fazel ◽  
Hamid Darabi ◽  
Bahram Choubin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document