scholarly journals Plasma membrane proteomics identifies bone marrow stromal antigen 2 as a potential therapeutic target in endometrial cancer

2012 ◽  
Vol 132 (2) ◽  
pp. 472-484 ◽  
Author(s):  
Takuhei Yokoyama ◽  
Takayuki Enomoto ◽  
Satoshi Serada ◽  
Akiko Morimoto ◽  
Shinya Matsuzaki ◽  
...  
2020 ◽  
Vol 31 (2) ◽  
Author(s):  
Haruko Kunitomi ◽  
Yusuke Kobayashi ◽  
Ren-Chin Wu ◽  
Takashi Takeda ◽  
Eiichiro Tominaga ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (13) ◽  
pp. 2051-2060 ◽  
Author(s):  
Sarah K. Johnson ◽  
James P. Stewart ◽  
Rakesh Bam ◽  
Pingping Qu ◽  
Bart Barlogie ◽  
...  

Key Points CYR61/CCN1 is a bone marrow microenvironmental biomarker for myeloma progression and for transformation of MGUS and asymptomatic disease to overt myeloma. CCN1 reduces myeloma bone disease and tumor growth and is a potential therapeutic target for myeloma.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5193-5193
Author(s):  
Li Lu ◽  
Wen Du ◽  
Wei Liu ◽  
Dongmei Guo ◽  
Shiang Huang ◽  
...  

Abstract Background: Myelodysplastic syndromes (MDS) are defined as a heterogeneous group of clonal hematopoietic stem cell (HSC) malignant disorders which are characterized by bone marrow failure and dysplasia of blood cells. As continually terminated in AML, MDS are treated as the "pre-leukemia" condition. HERG K+ channels, being three subtypes: HERG1, HERG.2, HERG3, are expressed transiently at early stages of cells such as progenitor and stem cells, disappearing at later stages of cells like mature cells. Our previous work and others demonstrated that HERG1, as an oncoprotein, was over expressed in AML cells and played crucial roles in SDF-1induced leukemia cell migration. The expression and functional role of HERG1 K+ channels in MDS development is not reported. We investigated the HERG1 K+ channels expression and explored the functional link between HERG1 K+ channels and MDS progression Methods: The expression of HERG1 K+ channels in untreated MDS, AML patients and normal control was detected by flow cytometry. The roles of HERG1K+ channels in regulation of SKM-1 cell proliferation, apoptosis and cell cycle by CCK-8 assay and flow cytometry, respectively. Results: We observed that the expression of HERG1 K+ channels on bone marrow (BM) mononuclear cells (MNCs) in MDS patients was significantly higher than that in the controls (42 ± 7.62% vs 19.8 ± 2.79%, p < 0.01) , but was lower than that in AML (42 ± 7.62% vs 52.18 ± 9.72%, p < 0.01). MDS subtypes mainly contained refractory cytopenia unilineage dysplasia (RCUD), refractory cytopenia with multilineage dysplasia (RCMD), refractory anemia with excess blast I (RAEB-I), refractory anemia with excess blasts II (RAEB-II) and MDS-unclassified (MDS-U). We next analyzed percentage of HERG1 K+ channels in MDS subtypes and found that level of HERG1 K+ channels on the MNCs in each subtypes of MDS was significant higher than that in the control group (Control: 19.8 ± 2.79%, MDS-RCUD: 30.91 ± 1.48%, MDS-RCMD: 39.06 ± 2.47%, MDS-RAEB-I: 44.76 ± 5.54%, MDS-RAEB-II: 49.69 ± 3.28%, p < 0.01), suggesting that HERG1 K+ channels expression might be positively associated with malignancy degree of MDS. HSCs played important roles in the pathophysiology of MDS. Our results also revealed that with the increase of malignancy degree, the percentage of HERG1K+ channels on CD34+CD38- derived cells from MDS subtypes tended to elevate in corresponding MDS subtypes (MDS-RCUD: 61.21 ± 9.46%, MDS-RCMD: 65.66 ± 4.57%, MDS-RAEB-I: 72.35 ± 9.38%, MDS-RAEB-II: 75.71 ± 4.24%, p < 0.05), which supported the notion in other way that MDS are HSC malignant disorders. The over-expression of HERG1 K+ channels on CD34+CD38- cells in MDS patients might be correlated with the oncogenesis of MDS. In addition, the prognosis stratification of MDS patients was performed according to International Prognostic Scoring System (IPSS) scores and the untreated MDS cohort was categorized as four risk groups: Low-R, Int-1-R, Int-2-R and High-R. Our results showed that there was a positively correlation between HERG1 level and IPSS scores of patients (Low-R: 31.93 ± 3.47%, Int-1-R: 39.95 ± 5.76%, Int-2-R: 45.94 ± 6.34%, High-R: 49.05 ± 3.04%, p < 0.01). This showed that expression level of HERG1 K+ channels was helpful for predicting the prognosis of de novo MDS. Furthermore, we analyzed HERG1 K+ channel role on MDS cell proliferation and apoptosis. Incubation with 0, 10, 20 uM E-4031 ( HERG K+ channels inhibitor) with SKM-1 cells (MDS cell line) for 48 h, the results showed that blockage of HERG1 decreased the proliferation of SKM-1 cells but had rarely effects on cell apoptosis and cell cycle distribution. In consistent with other studies, HERG1 K+ channels had already been shown to be necessary for growth of cancer cells through specific activities independent of cell cycle such as interacting with TNFR1 protein which could activate NF-κB to facilitate cell proliferation and favoring transduction of growth signals by MAP kinase/c-fos pathway. These findings showed that physiological activity of HERG1 K+ channels was crucial for MDS cell proliferation and HERG1 K+ channels may be a potential therapeutic target for MDS. Conclusion: Briefly, our study firstly showed that HERG1 K+ channels were aberrantly over-expressed on MDS stem cells, mononuclear cells, and positively associated with malignancy degree of MDS. HERG1 K+ channels functionally contribute to MDS progression and may be a potential therapeutic target for MDS. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shilu Luo ◽  
Ming Yang ◽  
Hao Zhao ◽  
Yachun Han ◽  
Na Jiang ◽  
...  

The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1648-1648 ◽  
Author(s):  
Yaser Heshmati ◽  
Gözde Turköz ◽  
Aditya Harisankar ◽  
Sten Linnarsson ◽  
Marios Dimitriou ◽  
...  

Abstract Acute myeloid leukemia (AML) is characterized by impaired myeloid differentiation of hematopoietic progenitors, causing uncontrolled proliferation and accumulation of immature myeloid cells in the bone marrow. Rearrangements of the mixed lineage leukemia (MLL) gene are common aberrations in acute leukemia and occur in over 70% in childhood leukemia and 5-10% in leukemia of adults. MLL rearrangements encode a fusion oncogenic H3K4 methytransferase protein, which is sufficient to transform hematopoietic cells and give rise to an aggressive subtype of AML. Leukemia where the MLL fusion oncogene is expressed is characterized by dismal prognosis and 30-60% of 5-years overall survival rate. The current standard treatment for AML is chemotherapy and in certain cases bone marrow transplantation. However, chemotherapy causes severe side effects on normal cells and an increased risk of relapse. Consequently, discovery of novel drug targets with better efficacy and low toxicity are needed to improve treatment of AML. In this study, we aimed to identify genes that are required for growth of AML cells and that encode proteins that potentially could be used as therapeutic targets. To do this, we performed high-throughput RNAi screening covering all annotated human genes and the homologous genes in mice, using barcoded lentiviral-based shRNA vectors. Stable loss-of-function screening was done in three AML cell lines (two human and one murine AML cell lines) as well as in a non-transformed hematopoietic control cell line. The candidate genes were selected based on that shRNA-mediated knockdown caused at least a 5-fold growth inhibition of leukemic cells and that the individual candidates were targeted by multiple shRNAs. The chromodomain Helicase DNA binding protein 4 (CHD4), a chromatin remodeler ATPase, displayed the most significant effect in reduced AML cell proliferation upon inhibition among the overlapping candidate genes in all three AML cell lines. CHD4 is a main subunit of the Nucleosome Remodeling Deacetylase (NuRD) complex and has been associated with epigenetic transcriptional repression. A recent study has shown that inhibition of CHD4 sensitized AML cells to genotoxic drugs by chromatin relaxation, which increases rate of double-stranded break (DSB) in leukemic cells. To verify whether CHD4 is exclusively essential for AML with MLL rearrangements, we inhibited CHD4 expression with two independent shRNAs in various AML cell lines with and without MLL translocations. In vitro monitoring of growth and viability indicated that knockdown of CHD4 efficiently suppressed growth in all tested cell lines, suggesting that CHD4 is required in general for growth of leukemic cells. To test the effect of CHD4 inhibition in normal hematopoiesis, we pursued knockdown of CHD4 and monitored effects in hematopoiesis using colony formation assays of human CD34+ cells. The results demonstrated that CHD4 knockdown had minor effects in colony formation as well as growth and survival of normal hematopoietic cells. Furthermore, to explore whether inhibition of CHD4 can prevent AML tumor growth and disease progression in vivo, we have generated a mouse model for AML. By transplanting AML cells transduced with shRNA against CHD4 into recipient mice, we showed that shRNA-mediated targeting of CHD4 not only significantly prolonged survival of AML transplanted mice but also in some cases completely rescued some mice from development of the disease. Collectively, these data suggested that CHD4 is required for AML maintenance in vivo. Next, to determine whether suppression of CHD4 can inhibit cell growth of different subpopulations and subtypes of AML, we performed loss of function studies of CHD4 on patient-derived AML cells ex vivo. Loss of CHD4 expression significantly decreased the frequency of leukemic initiating cells in different subtypes AML patient samples. In further in vivo studies using a xeno-tranplantation model for AML, we demonstrated that shRNA-mediated inhibition of CHD4 significantly reduced the frequency of leukemic cells in the marrow 6 weeks after transplantation. Taken together our results demonstrated the critical and selective role of CHD4 in propagation of patient-derived AML cells as well as in disease progression in mouse models for AML. We believe that CHD4 represents a novel potential therapeutic target that can be used to battle AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1540-1540 ◽  
Author(s):  
Vijaya Pooja Vaikari ◽  
Miran Jang ◽  
Mojtaba Akhtari ◽  
Houda Alachkar

Abstract Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by clonal proliferation and block of differentiation of myeloid precursors. Overall survival for patients with AML remains dismal (<50% for younger patients and <10% for older patients) due to high relapse rate. In search for novel therapeutic targets in AML, we compared gene expression data of normal hematopoietic vs AML cells from 7 datasets (GSE13159, GSE13164, GSE7186, GSE1159, GSE995, GSE31174 and TCGA Leukemia) available on Oncomine. We identified CD99 to be significantly upregulated in AML cells compared with normal cells in all data sets with available measurements of CD99 expression (median ranking 155, p = 0.013); other genes among the top 10 genes identified in this analysis were FLT3 (median ranking 102, p<0.001) and WT1 (median ranking 120, p<0.001); both are known to play a role in AML. CD99 was significantly over-expressed (p<0.001) in 542 AML patients as compared with PBMCs from 74 healthy donors from the GSE13159 dataset. In the GSE13164 dataset, CD99 was significantly over-expressed in 257 AML patients as compared with PBMCs from 58 healthy donors. Consistently, in the GSE7186 dataset, CD99 was significantly over-expressed (p<0.001) in 23 AML patients as compared with 6 normal bone marrow samples and in the GSE1159 dataset, CD99 was significantly over-expressed (p=0.001) in 285 AML patients as compared with 5 normal bone marrow, and 3 normal blood samples. We also analyzed CD99 expression in cells obtained from 23 patients with AML and sorted according to their CD34 and CD38 expression levels (GSE3077 dataset). We found that CD99 expression was significantly higher (p<0.001) in the CD34+CD38+ and CD34+CD38- subpopulation compared with CD34-CD38- and CD34-CD38+; suggesting a possible role of CD99 in AML stem cells. Interestingly, analysis of three datasets (GSE22848, GSE6891, GSE15434) via R2: Genomics Analysis and Visualization Platform showed a correlation between CD99 expression and the presence of FLT3-ITD mutation. In the GSE22848 dataset, CD99 was significantly over-expressed (p=0.007) in 48 patients with FLT3-ITD as compared with 189 patients with FLT3 wildtype. In the GSE6891 dataset, 126 patients with FLT3-ITD had a significant over-expression of CD99 (p=0.006) as compared with 334 patients with FLT3 wildtype and in the GSE15434 dataset 90 FLT3-ITD positive patients had significantly higher levels of CD99 (p<0.001) as compared with 161 patients with the wildtype gene. CD99 (E2, MIC2), a 32-kD cell surface glycoprotein, is known to be involved in the transendothelium migration of neutrophils, T-cell adhesion, and T-cell death by a caspase-independent pathway. In cancer cells, CD99 was found to be highly expressed on the cell surface of Ewing's sarcoma tumors and in gliomas. Importantly, CD99 expression levels were found to be correlated with tumor invasiveness and with lower survival rates. In order to examine the role of CD99 in AML, we assessed CD99 expression by flow cytometry in nine AML cell lines (KG-1, KG-1A, MOLM13, MV4-11, Kasumi-1, THP-1, NB4, U937, UOC-M1); we found CD99 to be expressed in all cell lines. To determine whether CD99 is a potential therapeutic target in AML, we treated leukemia cells with anti-CD99 mAb (mAb 0662) at 5 µg/mL and analyzed cell viability 48 hours post-treatment. We found significant decrease in cell viability; 15% in MV4-11 cells (p=0.02), 32% in MOLM13 cells (p=0.002) and 18% in THP-1 cells (p<0.001) as compared with untreated controls measured by Alamar blue assay. Furthermore, inhibiting CD99 led to a decrease in migration of MV4-11, MOLM13 and THP-1 cells when analyzed using a trans-well migration assay. In conclusion, CD99 is highly expressed in AML, and this expression is significantly higher in less differentiated leukemia cells and in patients with FLT3-ITD mutation. Functional studies using CD99 antibodies revealed a possible role of this gene in cell survival and cell migration. Further studies are needed to establish CD99 as a potential therapeutic target and further investigations are ongoing to determine the mechanism by which CD99 regulates cell survival in AML. Disclosures No relevant conflicts of interest to declare.


Oncology ◽  
2013 ◽  
Vol 84 (3) ◽  
pp. 166-173 ◽  
Author(s):  
Mohammed Tanjimur Rahman ◽  
Kentaro Nakayama ◽  
Masako Ishikawa ◽  
Munmun Rahman ◽  
Hiroshi Katagiri ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (31) ◽  
pp. 49289-49298 ◽  
Author(s):  
Ingvild Løberg Tangen ◽  
Therese Bredholt Onyango ◽  
Reidun Kopperud ◽  
Anna Berg ◽  
Mari K. Halle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document