Transient alterations of the blood-brain barrier tight junction and receptor potential channel gene expression by chlorpyrifos

2012 ◽  
Vol 33 (10) ◽  
pp. 1187-1191 ◽  
Author(s):  
Wen Li ◽  
Marion Ehrich
2010 ◽  
Vol 16 (3) ◽  
pp. 293-302 ◽  
Author(s):  
Kinga G Blecharz ◽  
Aiden Haghikia ◽  
Mariusz Stasiolek ◽  
Niels Kruse ◽  
Detlev Drenckhahn ◽  
...  

Compromised blood—brain barrier integrity is a major hallmark of active multiple sclerosis (MS). Alterations in brain endothelial tight junction protein and gene expression occur early during neuroinflammation but there is little known about the underlying mechanisms. In this study, we analysed barrier compromising effects of sera from MS patients and barrier restoring effects of glucocorticoids on blood—brain barrier integrity in vitro. cEND murine brain microvascular endothelial cell monolayers were incubated with sera from patients in active phase of disease or in relapse. Data were compared with effects of the glucocorticoid dexamethasone alone or in combination with MS sera on barrier integrity. Tight junction protein levels and gene expression were evaluated concomitant with barrier integrity. We reveal downregulation of claudin-5 and occludin protein and mRNA and an accompanying upregulation in expression of matrix metalloproteinase MMP-9 after incubation with serum from active disease and remission and also a minor reconstitution of barrier functions related to dexamethasone treatment. Moreover, we for the first time describe downregulation of claudin-5 and occludin protein after incubation of cEND cells with sera from patients in remission phase of MS. Our findings reveal direct and differential effects of MS sera on blood-brain barrier integrity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Li Lo ◽  
Hua-Ching Lin ◽  
Shu-Ting Hong ◽  
Chih-Hsien Chang ◽  
Chen-Shen Wang ◽  
...  

Abstract Background Brain metastases from non-small cell lung cancer (NSCLC) remain one of the most challenging malignancies. Afatinib (Afa) is an orally administered irreversible ErbB family blocker approved for epidermal growth factor receptor (EGFR)-mutated NSCLC. However, the incidence of brain metastases in patients with NSCLC and EGFR mutation is high. One of the major obstacles in the treatment of brain metastases is to transport drugs across the blood–brain barrier (BBB). A lipid polymeric nanoparticle (LPN) modified with a tight junction-modulating peptide is a potential formulation to deliver therapeutics across the BBB. FD7 and CCD are short peptides that perturb the tight junctions (TJs) of the BBB. In this study, the use of LPN modified with FD7 or CCD as a delivery platform was explored to enhance Afa delivery across the BBB model of mouse brain-derived endothelial bEnd.3 cells. Results Our findings revealed that Afa/LPN-FD7 and Afa/LPN-CCD exhibited a homogeneous shape, a uniform nano-scaled particle size, and a sustained-release profile. FD7, CCD, Afa/LPN-FD7, and Afa/LPN-CCD did not cause a significant cytotoxic effect on bEnd.3 cells. Afa/LPN-FD7 and Afa/LPN-CCD across the bEnd.3 cells enhanced the cytotoxicity of Afa on human lung adenocarcinoma PC9 cells. FD7 and CCD-modulated TJ proteins, such as claudin 5 and ZO-1, reduced transendothelial electrical resistance, and increased the permeability of paracellular markers across the bEnd.3 cells. Afa/LPN-FD7 and Afa/LPN-CCD were also partially transported through clathrin- and caveolae-mediated transcytosis, revealing the effective activation of paracellular and transcellular pathways to facilitate Afa delivery across the BBB and cytotoxicity of Afa on PC9 cells. Conclusion TJ-modulating peptide-modified LPN could be a prospective platform for the delivery of chemotherapeutics across the BBB to the brain for the potential treatment of the BM of NSCLC.


2021 ◽  
Vol 22 (3) ◽  
pp. 1068
Author(s):  
Katarzyna Dominika Kania ◽  
Waldemar Wagner ◽  
Łukasz Pułaski

Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0144215 ◽  
Author(s):  
Gerard Honig ◽  
Simone Mader ◽  
Huiyi Chen ◽  
Amit Porat ◽  
Mahendar Ochani ◽  
...  

2001 ◽  
Vol 21 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Jian Yi Li ◽  
Ruben J. Boado ◽  
William M. Pardridge

The blood–brain barrier (BBB) is formed by the brain microvascular endothelium, and the unique transport properties of the BBB are derived from tissue-specific gene expression within this cell. The current studies developed a gene microarray approach specific for the BBB by purifying the initial mRNA from isolated rat brain capillaries to generate tester cDNA. A polymerase chain reaction–based subtraction cloning method, suppression subtractive hybridization (SSH), was used, and the BBB cDNA was subtracted with driver cDNA produced from mRNA isolated from rat liver and kidney. Screening 5% of the subtracted tester cDNA resulted in identification of 50 gene products and more than 80% of those were selectively expressed at the BBB; these included novel gene sequences not found in existing databases, ESTs, and known genes that were not known to be selectively expressed at the BBB. Genes in the latter category include tissue plasminogen activator, insulin-like growth factor-2, PC-3 gene product, myelin basic protein, regulator of G protein signaling 5, utrophin, IκB, connexin-45, the class I major histocompatibility complex, the rat homologue of the transcription factors hbrm or EZH1, and organic anion transporting polypeptide type 2. Knowledge of tissue-specific gene expression at the BBB could lead to new targets for brain drug delivery and could elucidate mechanisms of brain pathology at the microvascular level.


Sign in / Sign up

Export Citation Format

Share Document