Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation

2009 ◽  
Vol 108 (2) ◽  
pp. 400-407 ◽  
Author(s):  
E. Rampakakis ◽  
D. Di Paola ◽  
M.K. Chan ◽  
M. Zannis-Hadjopoulos
Author(s):  
Jian Shi ◽  
Yanjie Ma ◽  
Hui Hua ◽  
Yujiao Liu ◽  
Wei Li ◽  
...  

Meiosis is essential for genetic stability and diversity during sexual reproduction in most eukaryotes. Chromatin structure and gene expression are drastically changed during meiosis, and various histone modifications have been reported to participate in this unique process. However, the dynamic of histone modifications during meiosis is still not well investigated. Here, by using multiple reaction monitoring (MRM) based LC-MS/MS, we detected dynamic changes of histone H3 lysine post-translational modifications (PTMs). We firstly quantified the precise percentage of H3 modifications on different lysine sites during mouse and yeast meiosis, and found H3 acetylation and methylation were dramatically changed. To further study the potential functions of H3 acetylation and methylation in meiosis, we performed histone H3 lysine mutant screening in yeast, and found that yeast strains lacking H3K18 acetylation (H3K18ac) failed to initiate meiosis due to insufficient IME1 expression. Further studies showed that the absence of H3K18ac impaired respiration, leading to the reduction of Rim101p, which further upregulated a negative regulator of IME1 transcription, Smp1p. Together, our studies reveal a novel meiosis initiation pathway mediated by histone H3 modifications.


2012 ◽  
Vol 40 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Wallace H. Liu ◽  
Mair E.A. Churchill

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


2005 ◽  
Vol 281 (1) ◽  
pp. 559-568 ◽  
Author(s):  
Sandra B. Hake ◽  
Benjamin A. Garcia ◽  
Elizabeth M. Duncan ◽  
Monika Kauer ◽  
Graham Dellaire ◽  
...  

2008 ◽  
Vol 7 (10) ◽  
pp. 1649-1660 ◽  
Author(s):  
Qiye He ◽  
Cailin Yu ◽  
Randall H. Morse

ABSTRACT The histone H3 amino terminus, but not that of H4, is required to prevent the constitutively bound activator Cha4 from remodeling chromatin and activating transcription at the CHA1 gene in Saccharomyces cerevisiae. Here we show that neither the modifiable lysine residues nor any specific region of the H3 tail is required for repression of CHA1. We then screened for histone H3 mutations that cause derepression of the uninduced CHA1 promoter and identified six mutants, three of which are also temperature-sensitive mutants and four of which exhibit a sin − phenotype. Histone mutant levels were similar to that of wild-type H3, and the mutations did not cause gross alterations in nucleosome structure. One specific and strongly derepressing mutation, H3 A111G, was examined in depth and found to cause a constitutively active chromatin configuration at the uninduced CHA1 promoter as well as at the ADH2 promoter. Transcriptional derepression and altered chromatin structure of the CHA1 promoter depend on the activator Cha4. These results indicate that modest perturbations in distinct regions of the nucleosome can substantially affect the repressive function of chromatin, allowing activation in the absence of a normal inducing signal (at CHA1) or of Swi/Snf (resulting in a sin − phenotype).


2021 ◽  
Vol 8 ◽  
Author(s):  
George V. Papamokos ◽  
George Tziatzos ◽  
Dimitrios G. Papageorgiou ◽  
Spyros Georgatos ◽  
Efthimios Kaxiras ◽  
...  

Protein phosphorylation is a key regulatory mechanism in eukaryotic cells. In the intrinsically disordered histone tails, phosphorylation is often a part of combinatorial post-translational modifications and an integral part of the “histone code” that regulates gene expression. Here, we study the association between two histone H3 tail peptides modified to different degrees, using fully atomistic molecular dynamics simulations. Assuming that the initial conformations are either α-helical or fully extended, we compare the propensity of the two peptides to associate with one another when both are unmodified, one modified and the other unmodified, or both modified. The simulations lead to the identification of distinct inter- and intramolecular interactions in the peptide dimer, highlighting a prominent role of a fine-tuned phosphorylation rheostat in peptide association. Progressive phosphorylation appears to modulate peptide charge, inducing strong and specific intermolecular interactions between the monomers, which do not result in the formation of amorphous or ordered aggregates, as documented by experimental evidence derived from Circular Dichroism and NMR spectroscopy. However, upon complete saturation of positive charges by phosphate groups, this effect is reversed: intramolecular interactions prevail and dimerization of zero-charge peptides is markedly reduced. These findings underscore the role of phosphorylation thresholds in the dynamics of intrinsically disordered proteins. Phosphorylation rheostats might account for the divergent effects of histone modifications on the modulation of chromatin structure.


2006 ◽  
Vol 27 (4) ◽  
pp. 1254-1263 ◽  
Author(s):  
Tomomi Inai ◽  
Masashi Yukawa ◽  
Eiko Tsuchiya

ABSTRACT The IME2 gene is one of the key regulators of the initiation of meiosis in budding yeast. This gene is repressed during mitosis through the repressive chromatin structure at the promoter, which is maintained by the Rpd3-Sin3 histone deacetylase (HDAC) complex. IME2 expression in meiosis requires Gcn5/histone acetyltransferase, the transcriptional activator Ime1, and the chromatin remodeler RSC; however, the molecular basis of IME2 activation had not been previously defined. We found that, during mitotic growth, a nucleosome masked the TATA element of IME2, and this positioning depended on HDAC. This chromatin structure was remodeled at meiosis by RSC that was recruited to TATA by Ime1. Stable tethering of Ime1 to the promoter required the presence of Gcn5. Interestingly, Ime1 binding to the promoter was kept at low levels during the very early stages in meiosis, even when the levels of Ime1 and histone H3 acetylation at the promoter were at their highest, making a 4- to 6-h delay of the IME2 expression from that of IME1. HDAC was continuously present at the promoter regardless of the transcriptional condition of IME2, and deletion of RPD3 allowed the IME2 expression shortly after the expression of IME1, suggesting that HDAC plays a role in regulating the timing of IME2 expression.


2021 ◽  
Author(s):  
Bhushan L. Thakur ◽  
Anagh Ray ◽  
Christophe E. Redon ◽  
Mirit I. Aladjem

Sign in / Sign up

Export Citation Format

Share Document