N-stearoyltyrosine protects primary cortical neurons against oxygen-glucose deprivation-induced apoptosis through inhibiting anandamide inactivation system

2017 ◽  
Vol 123 ◽  
pp. 8-18
Author(s):  
Heng-Jing Cui ◽  
Sha Liu ◽  
Rui Yang ◽  
Guo-Hui Fu ◽  
Yang Lu
Author(s):  
Ying Tian ◽  
Liang Wang ◽  
Zhiqiang Qiu ◽  
Yulun Xu ◽  
Rongrong Hua

We reported that a high level of autophagy was initiated by oxygen-glucose deprivation (OGD) and was maintained in neurons even after oxygen-glucose deprivation followed by reoxygenation (OGD/R), accompanied by neuronal apoptosis. This study focused on autophagy-induced apoptosis and its signaling network, especially the role of endoplasmic reticulum stress (ERS). Analysis of primary cultured cortical neurons from mice showed that the autophagy-induced apoptosis depended on Caspase-8 and -9 but not Caspase-12. This finding did not mean that the endoplasmic reticulum did not participate in this process. Increases in the levels of endoplasmic reticulum (ER) biomarkers and Binding immunoglobulin protein (BiP) were induced by autophagy in OGD/R-treated neurons. In addition, as an apoptotic transcription factor induced by ER stress, C/EBP homologous protein (CHOP) expression was significantly increased in neurons after OGD/R. This result suggested that the autophagy-Bip-CHOP-caspase (8 and 9)-dependent apoptotic signaling pathway at least partly participated in autophagy-induced apoptosis in primary cortical neurons. It revealed that ER induced apoptosis in neurons suffering from OGD/R injury in an ER stress-CHOP-dependent manner rather than a caspase-12-dependent manner. However, more research on signaling or cross-linking networks and intermediate links are needed. The realization of caspase-12-independent BiP-CHOP neuronal apoptosis pathway has expanded our understanding of the neuronal apoptosis network, which may eventually provide endogenous interventional strategies for OGD/R injury after stroke.


2011 ◽  
Vol 31 (11) ◽  
pp. 2152-2159 ◽  
Author(s):  
Anna Lena Datwyler ◽  
Gisela Lättig-Tünnemann ◽  
Wei Yang ◽  
Wulf Paschen ◽  
Sabrina Lin Lin Lee ◽  
...  

Small ubiquitin-like modifier (SUMO)2/3 but not SUMO1 conjugation is activated after transient cerebral ischemia. To investigate its function, we blocked neuronal SUMO2/3 translation through lentiviral microRNA delivery in primary cortical neurons. Viability was unaffected by SUMO2/3 silencing unless neurons were stressed by transient oxygen–glucose deprivation (OGD). Both 15 and 45 minutes of OGD were tolerated by control microRNA-expressing neurons but damaged >60% of neurons expressing SUMO2/3 microRNA. Damaging OGD (75 minutes) increased neuronal loss to 54% (control microRNA) and to 99% (SUMO2/3 microRNA). This suggests that activation of SUMO2/3 conjugation is an endogenous neuroprotective stress response.


2017 ◽  
Vol 42 (8) ◽  
pp. 2294-2304 ◽  
Author(s):  
Tao Feng ◽  
WeiWei Chen ◽  
CaiYi Zhang ◽  
Jie Xiang ◽  
HongMei Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document