Hard meso/macroporous iron oxide/iron silicate macrospheres obtained by the multi‐templating technique

2019 ◽  
Vol 94 (9) ◽  
pp. 2888-2898 ◽  
Author(s):  
Emil Ioan Muresan ◽  
Aurel Pui ◽  
Teodor Măluţan ◽  
Adina Coroabă ◽  
Nicanor Cimpoesu ◽  
...  
Author(s):  
J. Ulan ◽  
R. Gronsky

Zeolites are shape selective catalysts widely used in industry. Selectivity arises from the fact that zeolites possess channels several angstroms in diameter which limits the size of species that can easily diffuse through. Promoted iron oxide is a highly active catalyst for the synthesis of hydrocarbons from CO and H2 (Fischer-Tropsch reaction) but researchers would like to narrow product selectivity to the C7-C10 gasoline range. Selectivity is improved by dispersing iron on zeolites and efforts are now directed at maximizing the iron distribution in the zeolite channels. One approach is to first incorporate iron directly into the zeolite framework during synthesis and then remove the iron from the zeolite framework and ideally form catalytically active iron oxide particles within the channels while still maintaining the pore structure of the zeolite. Iron silicate analogs of the zeolite ZSM-5 (FeZSM-5) have been synthesized and thermal treatments have been employed to produce a catalytic active material. The complete characterization by SEM and TEM of a series of FeZSM-5 catalysts with various Si/Fe ratios and preparation conditions has been achieved. This presentation is a continuation of that work. Three series of FeZSM-5 catalysts were synthesized, two had Si/Fe ratios of 45 with different Si/Al ratios and one had a Si/Fe ratio of 25. In each series, the synthetic conditions were modified by adding alkali metal cations (Li+, Na+ and K+) to the reaction mixture. It has been shown with ZSM-5 that the addition of alkali cations during synthesis produces large single crystals. The effect of alkali cations on the growth of zeolite analogs is interesting for several independent reasons ranging from basic studies of the mechanism of zeolite growth to practical experimental considerations. Single crystals are very desirable for electron microscopy studies: results are unambiguous for a single crystallite in one orientation compared to a region with many overlapping small particles.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2019 ◽  
Author(s):  
Suchanuch Sachdev ◽  
Rhushabh Maugi ◽  
Sam Davis ◽  
Scott Doak ◽  
Zhaoxia Zhou ◽  
...  

<div>The interface between two immiscible liquids represent an ideal substrate for the assembly of nanomaterials. The defect free surface provides a reproducible support for creating densely packed ordered materials. Here a droplet flow reactor is presented for the synthesis and/ or assembly of nanomaterials at the interface of the emulsion. Each droplet acts as microreactor for a reaction between decamethylferrocene (DmFc) within the hexane and metal salts (Ag+/ Pd2+) in the aqueous phase. The hypothesis was that a spontaneous, interfacial reaction would lead to the assembly of nanomaterials creating a Pickering emulsion. The subsequent removal of the solvents showed how the Ag nanoparticles were trapped at the interface and retain the shape of the droplet, however the Pd nanoparticles were dispersed with no tertiary structure. To further exploit this, a one-step process where the particles are synthesised and then assembled into core-shell materials was proposed. The same reactions were performed in the presence of oleic acid stabilise Iron oxide nanoparticles dispersed within the hexane. It was shown that by changing the reaction rate and ratio between palladium and iron oxide a continuous coating of palladium onto iron oxide microspheres can be created. The same reaction with silver, was unsuccessful and resulted in the silver particles being shed into solution, or incorporated within the iron oxide micro particle. These insights offer a new method and chemistry within flow reactors for the creation of palladium and silver nanoparticles. We use the technique to create metal coated iron oxide nanomaterials but the methodology could be easily transferred to the assembly of other materials.</div><div><br></div>


Sign in / Sign up

Export Citation Format

Share Document