scholarly journals Establishing three warm season turfgrasses with tailored water: II. Root development, nitrate accumulation in plant tissue and soil, and relationship with leaching

Author(s):  
Bernd Leinauer ◽  
Elena Sevostianova ◽  
Ciro Velasco‐Cruz ◽  
Rossana Sallenave ◽  
Matteo Serena ◽  
...  
2011 ◽  
Vol 103 (6) ◽  
pp. 1629-1634 ◽  
Author(s):  
B. G. Wherley ◽  
T. R. Sinclair ◽  
M. D. Dukes ◽  
A. K. Schreffler

2006 ◽  
Vol 96 (11) ◽  
pp. 1195-1203 ◽  
Author(s):  
N. Korolev ◽  
T. Katan ◽  
Y. Elad

Botrytis cinerea marked strains combining traits of fungicide resistance or sensitivity (carbendazim, iprodione) with resistance to selenate were created and assessed for use in studying the dispersal of B. cinerea and its survival inside plant tissue under greenhouse conditions. Marked strains differed in their ability to cause lesions and to disperse in the greenhouse. A strain that was the most aggressive in infecting plants was also the most successful in spreading across the greenhouse. Following 7 to 14 days of exposure to marked inoculum, about 90% of plants showed quiescent B. cinerea infection with no significant difference between hosts or seasons. However, in a warm season, most of the plants were infected with wild-type B. cinerea, whereas most of the winter-recovered B. cinerea strains were of the marked phenotype, showing the importance of local inoculum from within the glasshouse in winter. The air of the greenhouse contained the same population of marked B. cinerea in warm and in cold periods, whereas the total population was significantly higher in summer. In the warm season, mycelium of B. cinerea inside plant debris lost viability within 3 to 4 months, whereas it stayed viable for 4 months in the winter (December to March) and started to lose viability in April.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135196 ◽  
Author(s):  
Chunyan Yu ◽  
Yihua Liu ◽  
Aidong Zhang ◽  
Sha Su ◽  
An Yan ◽  
...  

HortScience ◽  
2011 ◽  
Vol 46 (8) ◽  
pp. 1202-1205 ◽  
Author(s):  
Thomas R. Sinclair ◽  
Andrew Schreffler ◽  
Benjamin Wherley ◽  
Michael D. Dukes

Although root development is critical in the establishment of turfgrass sod, there appears to be no information on the response of root development during sod establishment to the frequency and amount of irrigation. Two alternate hypotheses for the root development response are that 1) frequent and high amounts of irrigation are needed to support sod growth and root development; and 2) deficit irrigation encourages more rapid and deeper rooting. The objective of this study was to observe root development of four warm-season turfgrasses subjected to various frequencies and amounts of irrigation. Root extension of the grasses was observed directly in soil contained in 90-cm tall, clear acrylic columns. No difference in root development was observed for any of the grasses among irrigation frequency treatments of daily, twice weekly, and once weekly. There were differences in response to the amount of irrigation. Zoysiagrass root development was maximal at the full amount of irrigation (35 mm per week). On the other hand, St. Augustinegrass, bermudagrass, and bahiagrass required deficit irrigation of only 13 mm water per week to achieve full root development. The results of this study showed that each of the two hypotheses were appropriate depending on the specific species.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Author(s):  
R. D. Sjolund ◽  
C. Y. Shih

The differentiation of phloem in plant tissue cultures offers a unique opportunity to study the development and structure of sieve elements in a manner that avoids the injury responses associated with the processing of similar elements in intact plants. Short segments of sieve elements formed in tissue cultures can be fixed intact while the longer strands occuring in whole plants must be cut into shorter lengths before processing. While iyuch controversy surrounds the question of phloem function in tissue cultures , sieve elements formed in these cultured cells are structurally similar to those of Intact plants. We are particullarly Interested In the structure of the plasma membrane and the peripheral ER in these cells because of their possible role in the energy-dependent active transport of sucrose into the sieve elements.


Planta Medica ◽  
2013 ◽  
Vol 79 (05) ◽  
Author(s):  
M Mujeeb ◽  
M Amir ◽  
AS Nadeem ◽  
M Aqil ◽  
AK Najmi ◽  
...  

EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Jose C.B. Dubeux ◽  
Nicolas DiLorenzo ◽  
Kalyn Waters ◽  
Jane C. Griffin

Florida has 915,000 beef cows and 125,000 replacement heifers (USDA, 2016). Developing these heifers so that they can become productive females in the cow herd is a tremendous investment in a cow/calf operation, an investment that takes several years to make a return. The good news is that there are options to develop heifers on forage-based programs with the possibility of reducing costs while simultaneously meeting performance targets required by the beef industry. Mild winters in Florida allows utilization of cool-season forages that can significantly enhance the performance of grazing heifers. During the warm-season, integration of forage legumes into grazing systems will provide additional nutrients to meet the performance required to develop a replacement heifer to become pregnant and enter the mature cow herd. In this document, we will propose a model for replacement heifer development, based on forage research performed in trials at the NFREC Marianna.   


The article deals with the issues of glass use in the enclosing structures of large-span coverings, which have such advantages as ensuring the penetration of natural light, tightness, minimum labor costs for repair and maintenance. Design shortcomings: the high cost, the need for protection of the internal volume against the penetrating sun rays in the warm season (hothouse effect); arrangement of devices for operation of a roof. The key technical properties and characteristics of glass panels and pane-glass sets, constructive decisions, including interface to the main bearing structures of a large-span covering are given. Peculiarities of their design with due regard for ventilation and smoke removal, a drainage of condensate, ways of fight against frosting and snow drifts on the roof are reflected. Features of the account of loadings, the basic approaches to their calculation are considered. Various design solutions for the spatial metal trussed systems with the original nodal connections are presented. Information on modern solutions of translucent roofs using glass for large-span coverings is given.


Sign in / Sign up

Export Citation Format

Share Document