Translucent Glass Roofs For Large-Span Coverings

The article deals with the issues of glass use in the enclosing structures of large-span coverings, which have such advantages as ensuring the penetration of natural light, tightness, minimum labor costs for repair and maintenance. Design shortcomings: the high cost, the need for protection of the internal volume against the penetrating sun rays in the warm season (hothouse effect); arrangement of devices for operation of a roof. The key technical properties and characteristics of glass panels and pane-glass sets, constructive decisions, including interface to the main bearing structures of a large-span covering are given. Peculiarities of their design with due regard for ventilation and smoke removal, a drainage of condensate, ways of fight against frosting and snow drifts on the roof are reflected. Features of the account of loadings, the basic approaches to their calculation are considered. Various design solutions for the spatial metal trussed systems with the original nodal connections are presented. Information on modern solutions of translucent roofs using glass for large-span coverings is given.

Author(s):  
A. F. Rozhkov ◽  
A. A. Lavrov ◽  
I. V. Pikuleva ◽  
D. A. Polivanov

Objective. The article deals with the problem of ensuring the rigidity of a frame wooden multi-story building and ways to achieve the necessary spatial rigidity, taking into account the requirements of preserving the internal volume and free space. The case of excess spatial rigidity and measures to optimize it are provided to increase the economic efficiency of the project.Methods. A simpler and less time-consuming method is the initial estimation of the cross-sectional area of the rigid elements that take the wind load. The authors propose a method for the preliminary calculation of building stiffness with subsequent adjustment in the calculation scheme.Results. The design scheme of the building frame is made in the Scad Office software package to take into account the influence of the own structure weight, the redistribution of forces and movements due to the spatial work of the frame, with subsequent adjustment of the cross-sections of rigid elements.Conclusion. The most rational and least time-consuming method for numerical calculation of stiffness is the initial estimation of the cross-sectional area of the system of rigid elements. With its help, it is possible to avoid an excess of spatial rigidity of the building and reduce the time and labor costs for selecting the location of rigid elements.


2020 ◽  
Vol 7 (2) ◽  
pp. 258-272
Author(s):  
Rawan AlQudah ◽  
◽  
Ahmed Freewan ◽  

Enormous studies have been conducted to enhance the daylighting utilization in buildings either by direct lighting techniques, lighting reflection systems, lighting transporting systems, or by light tracking systems. The current research aims at evaluating acrylic panels as a light transmitting medium and studying their possible applications to bring natural light to inner spaces due to the lack of researches on acrylic sheets. Acrylic panels utilize the total internal reflection phenomena to convey the light for long distances. The research depended on real experiments and real measurements by using physical models with real dimensions. Many design variables had been studied like thickness, length, orientations and surroundings materials. The long-term measurements showed that acrylic panels could transmit light 8 times greater than the glass sheets, and the thickness of 20 mm for the acrylic glass panel, 30 cm collector length, 20cm diffuser length, with a steel surrounding on both sides show a great potential to transmit light up to 3493.3 lux at the diffuser during the peak hours in summer. While the results of the real size daylighting chamber show that the acrylic glass could transmit light up to 580 lux during the peak hours in summer. The study showed that the number and the distribution of acrylic glass panels in the space depend on the needed illuminance task levels. Moreover, the acrylic glass panels could be easily integrated with building materials in walls and roofs.


1981 ◽  
Vol 20 (04) ◽  
pp. 217-222 ◽  
Author(s):  
J. R. Möhr

Conclusions from an IMIA working conference on »The Computer in the Doctor’s Office« which took place in Hannover (FRG) in April 1980 are presented. The basis for these conclusions is outlined as a synthesis of the conference proceedings. Reasons for EDP application, basic approaches, achievable results and further trends are treated in detail.


EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Jose C.B. Dubeux ◽  
Nicolas DiLorenzo ◽  
Kalyn Waters ◽  
Jane C. Griffin

Florida has 915,000 beef cows and 125,000 replacement heifers (USDA, 2016). Developing these heifers so that they can become productive females in the cow herd is a tremendous investment in a cow/calf operation, an investment that takes several years to make a return. The good news is that there are options to develop heifers on forage-based programs with the possibility of reducing costs while simultaneously meeting performance targets required by the beef industry. Mild winters in Florida allows utilization of cool-season forages that can significantly enhance the performance of grazing heifers. During the warm-season, integration of forage legumes into grazing systems will provide additional nutrients to meet the performance required to develop a replacement heifer to become pregnant and enter the mature cow herd. In this document, we will propose a model for replacement heifer development, based on forage research performed in trials at the NFREC Marianna.   


EDIS ◽  
2017 ◽  
Vol 2017 (4) ◽  
Author(s):  
Philipe Moriel

Calves can be preconditioned using a wide variety of supplemental feed ingredients. However, feed ingredient selection is not the only factor to consider during a preconditioning process. Increasing the protein supply to stressed, preconditioning beef steers led to greater growth performance, and increased immune response to vaccination during a 42-day preconditioning period. Producers should not reduce the frequency of concentrate supplementation during the entire preconditioning period as it might lead to poorer vaccine response and average daily gain (consequently, less calf value at sale). However, a gradual reduction of frequency of supplementation is a supplementation strategy that can overcome these negative effects on growth and immunity, and allows producers to save on feeding and labor costs without producing lighter calves that have weaker immune responses.  


2019 ◽  
pp. 27-33
Author(s):  
Aleksei K. Solovyov ◽  
Bi Guofu

The term “window” in architecture usually stands for an opening in a wall or roof for penetration of natural light, sunrays and fresh air in premises. Recently, the requirement of contact with environment is added to this condition. It is especially relevant for residential buildings where rooms are considered residential if they have windows. The energy consumption of a building depends on sizes, form and location of windows. In winter, windows cause huge heat losses, in summer, on the other hand, large heat enters a building via the windows and is required to be removed by means of air conditioning. Moreover, windows are used for penetration of natural light in premises, which assists in saving of large amounts of power for artificial illumination. This article discusses partial solving the problem of the energy efficiency of residential buildings by determining the most efficient area of windows in terms of energy spending for compensation of heat losses via windows in winter, elimination of heat penetration through them in summer and energy losses for artificial lighting throughout the year. The analysis of the results of calculation of power consumption for residential premises in conditions of monsoon climate of the Russian Far East and Northern areas of China (PRC) is provided.


2018 ◽  
pp. 5-26 ◽  
Author(s):  
Stanislav Darula

Three elements mainly wind, water and sun seemed to determine in ancient ages the basic phenomena of life on Earth. Architectural history documented the importance of sun influence on urban and building construction already in layouts of Mesopotamian and Greek houses. Not only sun radiation but especially daylight played a significant role in the creation of indoor environment. Later, in the 20th century, a search of interaction between human life in buildings and natural conditions were studied considering well­being and energy conscious design recently using computer tools in complex research and more detail interdisciplinary solutions. At the same time the restricted daytime availability of natural light was supplemented by more efficient and continually cheaper artificial lighting of interiors. There are two main approaches to standardize the design and evaluation of indoor visual environment. The first is based on the determination of the minimum requirements respecting human health and visibility needs in all activities while the second emphasizes the behaviour and comfort of occupants in buildings considering year­around natural changes of physical quantities like light, temperature, noise and energy consumption. The new current standardization basis for daylight evaluation and window design criteria stimulate the study of methodology principles that historically were based on the overcast type of sky luminance pattern avoiding yearly availability of sky illuminance levels. New trends to base the daylight standardization on yearly or long­term availability of daylight are using the averages or median sky illuminance levels to characterise local climatological conditions. This paper offers the review and discussion about the principles of the natural light standardization with a short introduction to the history and current state, with a trial to focus on the possible development of lighting engineering and its standards in future.


Sign in / Sign up

Export Citation Format

Share Document