The ontogeny of personality: Repeatability of social and escape behaviors across developmental stages in Siberian hamsters ( Phodopus sungorus )

Author(s):  
Catherine H. Adaniya ◽  
Cara L. Wellman ◽  
Gregory E. Demas ◽  
Jessica A. Cusick
2001 ◽  
Vol 281 (2) ◽  
pp. R519-R527 ◽  
Author(s):  
Alexander S. Kauffman ◽  
Alessandra Cabrera ◽  
Irving Zucker

Few studies have directly addressed the impact of fur on seasonal changes in energy intake. The daily food intake of Siberian hamsters ( Phodopus sungorus) was measured under simulated summer and winter conditions in intact animals and those with varying amounts of pelage removed. Energy intake increased up to 44% above baseline control values for approximately 2–3 wk after complete shaving. Increases in food intake varied with condition and were greater in hamsters housed in short than long day lengths and at low (5°C) than moderate (23°C) ambient temperatures. Removal of 8 cm2 of dorsal fur, equivalent to 30% of the total dorsal fur surface, increased food intake, but removal of 4 cm2 had no effect. An 8-cm2 fur extirpation from the ventral surface did not increase food consumption. Food intake was not influenced differentially by fur removal from above brown adipose tissue hot spots. Fur plays a greater role in energy balance in winter- than summer-acclimated hamsters and conserves energy under a wide range of environmental conditions.


2004 ◽  
Vol 70 (3) ◽  
pp. 813-820 ◽  
Author(s):  
Brian J. Prendergast ◽  
Andrew K. Hotchkiss ◽  
Staci D. Bilbo ◽  
Randy J. Nelson

2008 ◽  
Vol 20 (12) ◽  
pp. 1339-1347 ◽  
Author(s):  
T. J. Greives ◽  
S. A. Humber ◽  
A. N. Goldstein ◽  
M.-A. L. Scotti ◽  
G. E. Demas ◽  
...  

2008 ◽  
Vol 294 (1) ◽  
pp. R236-R245 ◽  
Author(s):  
John Dark ◽  
Kimberly M. Pelz

Siberian hamsters ( Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20°C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist ( CGP71683 ) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.


2006 ◽  
Vol 290 (6) ◽  
pp. R1714-R1719 ◽  
Author(s):  
Zachary M. Weil ◽  
Leah M. Pyter ◽  
Lynn B. Martin ◽  
Randy J. Nelson

Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters ( Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.


Sign in / Sign up

Export Citation Format

Share Document