Influence of mineral fraction on the rheological properties of forsterite + enstatite during grain-size-sensitive creep: 1. Grain size and grain growth laws

2013 ◽  
Vol 118 (8) ◽  
pp. 3970-3990 ◽  
Author(s):  
Miki Tasaka ◽  
Takehiko Hiraga
2019 ◽  
Author(s):  
Junichi Fukuda ◽  
Hugues Raimbourg ◽  
Ichiko Shimizu ◽  
Kai Neufeld ◽  
Holger Stünitz

Abstract. The grain growth of quartz was investigated using two samples of quartz (powder and quartzite) with water under pressure and temperature conditions of 1.0–2.5 GPa and 800–1100 °C. The compacted powder preserved a large porosity, which caused a slower grain growth than in the dense quartzite. We assumed a grain-growth law of dn-d0n = k0 fH2Or exp⁡(−Q/RT)t with grain size d (µm) at time t (second), initial grain size d0 (µm), growth exponent n, a constant k0 (µmn MPa−r s−1), water fugacity fH2O (MPa) with the exponent r, activation energy Q (kJ/mol), gas constant R, and temperature T in Kelvin. The parameters we obtained were n = 2.5 ± 0.4, k0 = 10−8.8 ± 1.4, r = 2.3 ± 0.3, and Q = 48 ± 34 for the powder, and n = 2.9 ± 0.4, k0 = 10−5.8 ± 2.0, r = 1.9 ± 0.3, and Q = 60 ± 49 for the quartzite. The grain-growth parameters obtained for the powder may be of limited use because of the high porosity of the powder with respect to crystalline rocks, even if the differences between powder and quartzite vanish when grain sizes reach ~ 70 µm. Extrapolation of the grain-growth laws to natural conditions indicates that the contribution of grain growth to plastic deformation in the middle crust may be small. However, grain growth might become important for deformation in the lower crust when the strain rate is


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 621-636 ◽  
Author(s):  
Junichi Fukuda ◽  
Hugues Raimbourg ◽  
Ichiko Shimizu ◽  
Kai Neufeld ◽  
Holger Stünitz

Abstract. Grain growth of quartz was investigated using two quartz samples (powder and novaculite) with water under pressure and temperature conditions of 1.0–2.5 GPa and 800–1100 ∘C. The compacted powder preserved a substantial porosity, which caused a slower grain growth than in the novaculite. We assumed a grain growth law of dn-d0n=k0fH2Orexp⁡(-Q/RT)t with grain size d (µm) at time t (seconds), initial grain size d0 (µm), growth exponent n, a constant k0 (µmn MPa−r s−1), water fugacity fH2O (MPa) with the exponent r, activation energy Q (kJ mol−1), gas constant R, and temperature T in Kelvin. The parameters we obtained were n=2.5±0.4, k0=10-8.8±1.4, r=2.3±0.3, and Q=48±34 for the powder and n=2.9±0.4, k0=10-5.8±2.0, r=1.9±0.3, and Q=60±49 for the novaculite. The grain growth parameters obtained for the powder may be of limited use because of the high porosity of the powder with respect to crystalline rocks (novaculite), even if the differences between powder and novaculite vanish when grain sizes reach ∼70 µm. Extrapolation of the grain growth laws to natural conditions indicates that the contribution of grain growth to plastic deformation in the middle crust may be small. However, grain growth might become important for deformation in the lower crust when the strain rate is < 10−12 s−1.


2021 ◽  
Vol 127 (9) ◽  
Author(s):  
Andre Mayer ◽  
Tobias Haeger ◽  
Manuel Runkel ◽  
Johannes Rond ◽  
Johannes Staabs ◽  
...  

AbstractThe quality and the stability of devices prepared from polycrystalline layers of organic–inorganic perovskites highly depend on the grain sizes prevailing. Tuning of the grain size is either done during layer preparation or in a post-processing step. Our investigation refers to thermal imprint as the post-processing step to induce grain growth in perovskite layers, offering the additional benefit of providing a flat surface for multi-layer devices. The material studied is MAPbBr3; we investigate grain growth at a pressure of 100 bar and temperatures of up to 150 °C, a temperature range where the pressurized stamp is beneficial to avoid thermal degradation. Grain coarsening develops in a self-similar way, featuring a log-normal grain size distribution; categories like ‘normal’ or ‘secondary’ growth are less applicable as the layers feature a preferential orientation already before imprint-induced grain growth. The experiments are simulated with a capillary-based growth law; the respective parameters are determined experimentally, with an activation energy of Q ≈ 0.3 eV. It turns out that with imprint as well the main parameter relevant to grain growth is temperature; to induce grain growth in MAPbBr3 within a reasonable processing time a temperature of 120 °C and beyond is advised. An analysis of the mechanical situation during imprint indicates a dominance of thermal stress. The minimization of elastic energy and surface energy together favours the development of grains with (100)-orientation in MaPbBr3 layers. Furthermore, the experiments indicate that the purity of the materials used for layer preparation is a major factor to achieve large grains; however, a diligent and always similar preparation of the layer is equally important as it defines the pureness of the resulting perovskite layer, intimately connected with its capability to grow. The results are not only of interest to assess the potential of a layer with respect to grain growth when specific temperatures and times are chosen; they also help to rate the long-term stability of a layer under temperature loading, e.g. during the operation of a device.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


2007 ◽  
Vol 551-552 ◽  
pp. 387-392 ◽  
Author(s):  
Wen Juan Zhao ◽  
Hua Ding ◽  
D. Song ◽  
F.R. Cao ◽  
Hong Liang Hou

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.


1992 ◽  
Vol 94-96 ◽  
pp. 325-330 ◽  
Author(s):  
Y. Takayama ◽  
T. Tozawa ◽  
H. Kato ◽  
Norio Furushiro ◽  
S. Hori

Sign in / Sign up

Export Citation Format

Share Document