scholarly journals Experimental grain growth of quartz aggregates under wet conditions and its application to deformation in nature

2019 ◽  
Author(s):  
Junichi Fukuda ◽  
Hugues Raimbourg ◽  
Ichiko Shimizu ◽  
Kai Neufeld ◽  
Holger Stünitz

Abstract. The grain growth of quartz was investigated using two samples of quartz (powder and quartzite) with water under pressure and temperature conditions of 1.0–2.5 GPa and 800–1100 °C. The compacted powder preserved a large porosity, which caused a slower grain growth than in the dense quartzite. We assumed a grain-growth law of dn-d0n = k0 fH2Or exp⁡(−Q/RT)t with grain size d (µm) at time t (second), initial grain size d0 (µm), growth exponent n, a constant k0 (µmn MPa−r s−1), water fugacity fH2O (MPa) with the exponent r, activation energy Q (kJ/mol), gas constant R, and temperature T in Kelvin. The parameters we obtained were n = 2.5 ± 0.4, k0 = 10−8.8 ± 1.4, r = 2.3 ± 0.3, and Q = 48 ± 34 for the powder, and n = 2.9 ± 0.4, k0 = 10−5.8 ± 2.0, r = 1.9 ± 0.3, and Q = 60 ± 49 for the quartzite. The grain-growth parameters obtained for the powder may be of limited use because of the high porosity of the powder with respect to crystalline rocks, even if the differences between powder and quartzite vanish when grain sizes reach ~ 70 µm. Extrapolation of the grain-growth laws to natural conditions indicates that the contribution of grain growth to plastic deformation in the middle crust may be small. However, grain growth might become important for deformation in the lower crust when the strain rate is

Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 621-636 ◽  
Author(s):  
Junichi Fukuda ◽  
Hugues Raimbourg ◽  
Ichiko Shimizu ◽  
Kai Neufeld ◽  
Holger Stünitz

Abstract. Grain growth of quartz was investigated using two quartz samples (powder and novaculite) with water under pressure and temperature conditions of 1.0–2.5 GPa and 800–1100 ∘C. The compacted powder preserved a substantial porosity, which caused a slower grain growth than in the novaculite. We assumed a grain growth law of dn-d0n=k0fH2Orexp⁡(-Q/RT)t with grain size d (µm) at time t (seconds), initial grain size d0 (µm), growth exponent n, a constant k0 (µmn MPa−r s−1), water fugacity fH2O (MPa) with the exponent r, activation energy Q (kJ mol−1), gas constant R, and temperature T in Kelvin. The parameters we obtained were n=2.5±0.4, k0=10-8.8±1.4, r=2.3±0.3, and Q=48±34 for the powder and n=2.9±0.4, k0=10-5.8±2.0, r=1.9±0.3, and Q=60±49 for the novaculite. The grain growth parameters obtained for the powder may be of limited use because of the high porosity of the powder with respect to crystalline rocks (novaculite), even if the differences between powder and novaculite vanish when grain sizes reach ∼70 µm. Extrapolation of the grain growth laws to natural conditions indicates that the contribution of grain growth to plastic deformation in the middle crust may be small. However, grain growth might become important for deformation in the lower crust when the strain rate is < 10−12 s−1.


2011 ◽  
Vol 691 ◽  
pp. 65-71 ◽  
Author(s):  
Rodolfo F. K. Gunnewiek ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Grain growth is inevitable in the sintering of pure nanopowder zinc oxide. Sintering depend on diffusion kinetics, thus this growth could be controlled by ultra-fast sintering techniques, as microwave sintering. The purpose of this work was to investigate the nanostructural evolution of zinc oxide nanopowder compacts (average grain size of 80 nm) subjected to ultra-rapid microwave sintering at a constant holding temperature of 900°C, applying different heating rates and temperature holding times. Fine dense microstructures were obtained, with controlled grain growth (grain size from 200 to 450nm at high heating rate) when compared to those obtained by conventional sintering (grain size around 1.13µm), which leads to excessively large average final grain sizes.


2006 ◽  
Vol 530-531 ◽  
pp. 526-531 ◽  
Author(s):  
Claudinei dos Santos ◽  
L.H.P. Teixeira ◽  
J.K.M.F. Daguano ◽  
Kurt Strecker ◽  
Carlos Nelson Elias

In this work the influence of isothermal sintering time on the microstructural development of ZrO2-Al2O3 composite was studied. Powder mixture of ZrO2 containing 20 wt% Al2O3 was prepared by milling, compaction and sintering at 16000C, in air. The isothermal sintering time at 16000C was varied between 0 and 1440 min. The sintered samples were characterized in terms of phase composition and relative density. Their microstructures were characterized by grain size distributions and average grain size. These results were evaluated using the classic grain growth equation as a function of time, determining the grain growth exponent of these materials. Furthermore, the microstructural aspects were related to the mechanical properties (Vicker’s hardness and fracture toughness) of these composites.


1999 ◽  
Vol 564 ◽  
Author(s):  
Qing-Tang Jiang ◽  
Michael E. Thomas ◽  
Gennadi Bersuker ◽  
Brendan Foran ◽  
Robert Mikkola ◽  
...  

AbstractTransformations in electroplated Cu films from a fine to course grain crystal structure (average grain sizes went from ∼0.1 µm to several microns) were observed to strongly depend on film thickness and geometry. Thinner films underwent much slower transformations than thicker ones. A model is proposed which explains the difference in transformation rates in terms of the physical constraint experienced by the film since grain growth in thinner films is limited by film thickness. Geometrical constraints imposed by trench and via structures appear to have an even greater retardation effect on the grain growth. Experimental observations indicate that it takes much longer for Cu in damascene structures to go through grain size transformations than blanket films.


2007 ◽  
Vol 558-559 ◽  
pp. 1183-1188 ◽  
Author(s):  
Peter Streitenberger ◽  
Dana Zöllner

Based on topological considerations and results of Monte Carlo Potts model simulations of three-dimensional normal grain growth it is shown that, contrary to Hillert’s assumption, the average self-similar volume change rate is a non-linear function of the relative grain size, which in the range of observed grain sizes can be approximated by a quadratic polynomial. In particular, based on an adequate modification of the effective growth law, a new analytical grain size distribution function is derived, which yields an excellent representation of the simulated grain size distribution.


2010 ◽  
Vol 62 ◽  
pp. 227-231
Author(s):  
Keijiro Hiraga ◽  
Hidehiro Yoshida ◽  
Koji Morita ◽  
Byung Nam Kim

In tetragonal zirconia, possibility is investigated of densification with finer grain sizes under the combination of doping and sintering in air. The materials used are CIP'ed compacts of 3-mol%-yttria-stabilized tetragonal zirconia (3Y-TZP) doped with a small amount of cations. For a given sintering temperature and initial density of the compacts, while the doped cations enhances densification in the latest stage of sintering, the effect is different in grain growth during densification: a doped cation tended to enhance grain growth, whereas the other cations tended to suppress grain growth. As a result, the doping of the latter cations brings about a grain size finer than that of the undoped 3Y-TZP for a given relative density.


2010 ◽  
Vol 638-642 ◽  
pp. 1077-1082 ◽  
Author(s):  
Yasuhiro Yogo ◽  
Kouji Tanaka ◽  
Koukichi Nakanishi

An in-situ observation method for structures at high temperature is developed. The new observation device can reveal grain boundaries at high temperature and enables dynamic observation of these boundaries. Grain growth while maintaining microstructure at high temperature is observed by the new observation device with only one specimen for the entire observation, and grain sizes are quantified. The quantifying process reveals two advantages particular to the use of the new observation device: (1) the ability to quantify grain sizes of specified sizes and (2) the results of average grain size for many grains have significantly less errors because the initial structure is the same for the entire observation and the quantifying process. The new observation device has the function to deform a specimen while observing structures at high temperature, so that enables it to observe dynamic recrystallization of steel. The possibility to observe recrystallization is also shown.


1998 ◽  
Vol 13 (12) ◽  
pp. 3399-3410 ◽  
Author(s):  
O. N. Senkov ◽  
N. Srisukhumbowornchai ◽  
M. L. Öveçoglu ◽  
F. H. Froes

A fully dense nanocrystalline compact of the Ti–47Al–3Cr (at. %) alloy was produced by mechanical alloying and hot isostatic pressing at 725 °C. Microstructure characteristics and grain growth behavior of this compact were studied after annealing for up to 800 h in the temperature range of 725 to 1200 °C, using analytical transmission electron microscopy techniques. The temperature and time dependencies of the grain sizes and the grain size distributions were determined. The grain growth occurred, with a timeand temperature-invariant single-peak grain size distribution (when normalized by the mean grain size), which was consistent with normal grain growth. The experimentally measured grain growth exponent decreased from 10 to 4.6 when the temperature was increased. The grain growth kinetics was described by a single thermally activated rate process limited by a permanent pinning force on the grain boundaries. The microhardness decreased on annealing and followed the Hall–Petch relationship with the parameters Hυo = 5.8 GPa and KH = 1.6 MPa m0.5.


1994 ◽  
Vol 343 ◽  
Author(s):  
Zara Weng-Sieh ◽  
Tai. D. Nguyen ◽  
Ronald Gronsky

ABSTRACTThe microstructural evolution of ruthenium-silicon dioxide bilayer structures upon annealing is studied using transmission electron microscopy. SiO2/Ru/SiO2 structures, with thicknesses of 2/1/2 nm, 4/2/4 nm, 8/4/8 nm, and 20/10/20 nm, are formed by magnetron sputtering and annealed at 300 or 600°C. As-deposited films have grain sizes on the order of the Ru film thickness. After annealing at 600°C, significant grain growth is observed for all thicknesses, such that the final grain sizes are approximately 3 to 20x greater than the original film thickness. The largest increase in the average Ru grain size is observed for the 2 nm thick ruthenium film possibly due to the coalescence of Ru grains. The coalescence of the Ru particles in the 1 and 2 nm thick films results in the formation of lamellar Ru grains, which disrupts the contiguity of the Ru film. In all other cases, the increase in grain size is attributed to normal grain growth, but the formation of anomalous spherical grains is also observed.


Sign in / Sign up

Export Citation Format

Share Document