scholarly journals Astroglial glutamate transporters in the brain: Regulating neurotransmitter homeostasis and synaptic transmission

2017 ◽  
Vol 95 (11) ◽  
pp. 2140-2151 ◽  
Author(s):  
Ciaran Murphy-Royal ◽  
Julien Dupuis ◽  
Laurent Groc ◽  
Stéphane H. R. Oliet
Physiology ◽  
2001 ◽  
Vol 16 (4) ◽  
pp. 178-184 ◽  
Author(s):  
Sabino Vesce ◽  
Paola Bezzi ◽  
Andrea Volterra

For decades, scientists thought that all of the missing secrets of brain function resided in neurons. However, a wave of new findings indicates that glial cells, formerly considered mere supporters and subordinate to neurons, participate actively in synaptic integration and processing of information in the brain.


2017 ◽  
Vol 1 (3) ◽  
Author(s):  
Vito Di Maio ◽  
Francesco Ventriglia ◽  
Silvia Santillo

Synaptic transmission is the basic mechanism of information transfer between neurons not only in the brain, but along all the nervous system. In this review we will briefly summarize some of the main parameters that produce stochastic variability in the synaptic response. This variability produces different effects on important brain phenomena, like learning and memory, and, alterations of its basic factors can cause brain malfunctioning.


2019 ◽  
Vol 171 (2) ◽  
pp. 485-500 ◽  
Author(s):  
Bartosz Pomierny ◽  
Weronika Krzyżanowska ◽  
Żaneta Broniowska ◽  
Beata Strach ◽  
Beata Bystrowska ◽  
...  

Abstract Benzophenone-3 is the most commonly used UV filter. It is well absorbed through the skin and gastrointestinal tract. Its best-known side effect is the impact on the function of sex hormones. Little is known about the influence of BP-3 on the brain. The aim of this study was to show whether BP-3 crosses the blood-brain barrier (BBB), to determine whether it induces nerve cell damage in susceptible brain structures, and to identify the mechanism of its action in the central nervous system. BP-3 was administered dermally during the prenatal period and adulthood to rats. BP-3 effect on short-term and spatial memory was determined by novel object and novel location recognition tests. BP-3 concentrations were assayed in the brain and peripheral tissues. In brain structures, selected markers of brain damage were measured. The study showed that BP-3 is absorbed through the rat skin, passes through the BBB. BP-3 raised oxidative stress and induced apoptosis in the brain. BP-3 increased the concentration of extracellular glutamate in examined brain structures and changed the expression of glutamate transporters. BP-3 had no effect on short-term memory but impaired spatial memory. The present study showed that dermal BP-3 exposure may cause damage to neurons what might be associated with the increase in the level of extracellular glutamate, most likely evoked by changes in the expression of GLT-1 and xCT glutamate transporters. Thus, exposure to BP-3 may be one of the causes that increase the risk of developing neurodegenerative diseases.


1971 ◽  
Vol 49 (9) ◽  
pp. 519-523 ◽  
Author(s):  
K. Krnjević

2008 ◽  
Vol 99 (1) ◽  
pp. 112-121 ◽  
Author(s):  
L. Medrihan ◽  
E. Tantalaki ◽  
G. Aramuni ◽  
V. Sargsyan ◽  
I. Dudanova ◽  
...  

Rett syndrome is a neurodevelopmental disorder caused by mutations in the transcriptional repressor methyl-CpG-binding protein 2 (MeCP2) and represents the leading genetic cause for mental retardation in girls. MeCP2-mutant mice have been generated to study the molecular mechanisms of the disease. It was suggested that an imbalance between excitatory and inhibitory neurotransmission is responsible for the behavioral abnormalities, although it remained largely unclear which synaptic components are affected and how cellular impairments relate to the time course of the disease. Here, we report that MeCP2 KO mice present an imbalance between inhibitory and excitatory synaptic transmission in the ventrolateral medulla already at postnatal day 7. Focusing on the inhibitory synaptic transmission we show that GABAergic, but not glycinergic, synaptic transmission is strongly depressed in MeCP2 KO mice. These alterations are presumably due to both decreased presynaptic γ-aminobutyric acid (GABA) release with reduced levels of the vesicular inhibitory transmitter transporter and reduced levels of postsynaptic GABAA-receptor subunits α2 and α4. Our data indicate that in the MeCP2 −/y mice specific synaptic molecules and signaling pathways are impaired in the brain stem during early postnatal development. These observations mandate the search for more refined diagnostic tools and may provide a rationale for the timing of future therapeutic interventions in Rett patients.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Jiajing Zhang ◽  
Yi Zhou

The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in regulating synaptic functions.


2007 ◽  
Vol 8 (12) ◽  
pp. 935-947 ◽  
Author(s):  
Anastassios V. Tzingounis ◽  
Jacques I. Wadiche

Physiology ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Barbara Calabrese ◽  
Margaret S. Wilson ◽  
Shelley Halpain

Dendritic spines are small protrusions from neuronal dendrites that form the postsynaptic component of most excitatory synapses in the brain. They play critical roles in synaptic transmission and plasticity. Recent advances in imaging and molecular technologies reveal that spines are complex, dynamic structures that contain a dense array of cytoskeletal, transmembrane, and scaffolding molecules. Several neurological and psychiatric disorders exhibit dendritic spine abnormalities.


2009 ◽  
Vol 89 (1) ◽  
pp. 309-380 ◽  
Author(s):  
Masanobu Kano ◽  
Takako Ohno-Shosaku ◽  
Yuki Hashimotodani ◽  
Motokazu Uchigashima ◽  
Masahiko Watanabe

The discovery of cannabinoid receptors and subsequent identification of their endogenous ligands (endocannabinoids) in early 1990s have greatly accelerated research on cannabinoid actions in the brain. Then, the discovery in 2001 that endocannabinoids mediate retrograde synaptic signaling has opened up a new era for cannabinoid research and also established a new concept how diffusible messengers modulate synaptic efficacy and neural activity. The last 7 years have witnessed remarkable advances in our understanding of the endocannabinoid system. It is now well accepted that endocannabinoids are released from postsynaptic neurons, activate presynaptic cannabinoid CB1 receptors, and cause transient and long-lasting reduction of neurotransmitter release. In this review, we aim to integrate our current understanding of functions of the endocannabinoid system, especially focusing on the control of synaptic transmission in the brain. We summarize recent electrophysiological studies carried out on synapses of various brain regions and discuss how synaptic transmission is regulated by endocannabinoid signaling. Then we refer to recent anatomical studies on subcellular distribution of the molecules involved in endocannabinoid signaling and discuss how these signaling molecules are arranged around synapses. In addition, we make a brief overview of studies on cannabinoid receptors and their intracellular signaling, biochemical studies on endocannabinoid metabolism, and behavioral studies on the roles of the endocannabinoid system in various aspects of neural functions.


Sign in / Sign up

Export Citation Format

Share Document