Extreme distributions of Australian annual rainfall in relation to sea surface temperature

1983 ◽  
Vol 3 (2) ◽  
pp. 143-153 ◽  
Author(s):  
N. A. Streten
2020 ◽  
Author(s):  
Getachew Bayable Tiruneh ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background: Rainfall variability is a common characteristic in Ethiopia and it exceedingly affects agriculture particularly in the eastern parts of the country where rainfall is relatively scarce. Hence, understanding the spatio-temporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatio-temporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia.Method: The coefficient of variation (CV) and standardized anomaly index (SAI) was employed to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by the Pearson correlation coefficient (r).Results: The annual rainfall CV ranges from 12-19.36% while the seasonal rainfall CV extends from 15-28.49%, 24-35.58%, and 38-75.9% for average Kiremt (June-September), Belg (February-May), and Bega (October-January) seasons, respectively (1983-2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends of rainfall were not statistically significant (α = 0.05), unlike November. The annual rainfall trends showed a non-significant decreasing trend. On a seasonal basis, the trend of mean Kiremt and Belg seasons rainfall was decreased. But, it increased in Bega season although it was not statistically significant. Moreover, the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, the correlation between rainfall and Pacific Ocean SST was negative at annual time scales.Conclusions: High spatial and temporal rainfall variability on monthly, seasonal, and annual time scales was observed in the study area. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall was increased annually and in the Bega season rather than other seasons. Generally, the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2020 ◽  
Vol 71 (2) ◽  
pp. 128 ◽  
Author(s):  
Timothy T. Scanlon ◽  
Greg Doncon

The shift in Indian Ocean sea surface temperatures in 1976 led to a change in rainfall for the broad-scale winter annual grain cropping and pasture region in the south-west of Western Australia (the WA wheatbelt). Agriculture in the eastern part the WA wheatbelt was particularly sensitive to the change in rainfall because it is a marginal area for agronomic production, with low rainfall before changes in sea surface temperature. A second shift in sea surface temperature occurred in 2000, but there has been no analysis of the resulting impact on rainfall in the eastern WA wheatbelt. An analysis of rainfall pre- and post-2000 was performed for sites in the eastern WA wheatbelt in three groups: 19 sites in the west, 56 central, and 10 east. The analysis found a decline in growing-season rainfall (i.e. April–October), especially during May–July, post-2000. Rainfall declines of 49.9 mm (west group), 39.1 mm (central group) and 28.0 mm (east group) represented respective losses of 20.1%, 17.4% and 14.2% of growing-season rainfall. Increases in out-of-season rainfall in the respective groups of 31.0, 33.6, and 50.7 mm (57.8%, 60.8% and 87.6%) meant that annual rainfall changes were smaller than growing-season losses. The west and central groups lost 17.5 and 6.16 mm annual rainfall, whereas the east group gained 15.6 mm. Analysis of wheat yield indicated reductions of 13.5% (west) and 9.90% (central) in the eastern WA wheatbelt; the small group of east sites had a potential yield gain of 8.9% arising from the increased out-of-season rainfall. Further, increased out-of-season rainfall will exacerbate weed and disease growth over the summer fallow.


2014 ◽  
Vol 27 (1) ◽  
pp. 285-299 ◽  
Author(s):  
Shang-Min Long ◽  
Shang-Ping Xie ◽  
Xiao-Tong Zheng ◽  
Qinyu Liu

Abstract The time-dependent response of sea surface temperature (SST) to global warming and the associated atmospheric changes are investigated based on a 1% yr−1 CO2 increase to the quadrupling experiment of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1. The SST response consists of a fast component, for which the ocean mixed layer is in quasi equilibrium with the radiative forcing, and a slow component owing to the gradual warming of the deeper ocean in and beneath the thermocline. A diagnostic method is proposed to isolate spatial patterns of the fast and slow responses. The deep ocean warming retards the surface warming in the fast response but turns into a forcing for the slow response. As a result, the fast and slow responses are nearly opposite to each other in spatial pattern, especially over the subpolar North Atlantic/Southern Ocean regions of the deep-water/bottom-water formation, and in the interhemispheric SST gradient between the southern and northern subtropics. Wind–evaporation–SST feedback is an additional mechanism for the SST pattern formation in the tropics. Analyses of phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble of global warming simulations confirm the validity of the diagnostic method that separates the fast and slow responses. Tropical annual rainfall change follows the SST warming pattern in both the fast and slow responses in CMIP5, increasing where the SST increase exceeds the tropical mean warming.


2015 ◽  
Vol 28 (4) ◽  
pp. 1511-1526 ◽  
Author(s):  
Andrew Hoell ◽  
Chris Funk ◽  
Mathew Barlow

Abstract Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Getachew Bayable ◽  
Gedamu Amare ◽  
Getnet Alemu ◽  
Temesgen Gashaw

Abstract Background Rainfall variability exceedingly affects agriculture in Ethiopia, particularly in the eastern region where rainfall is relatively scarce. Hence, understanding the spatiotemporal variability of rainfall is indispensable for planning mitigation measures during high and low rainfall seasons. This study examined the spatiotemporal variability and trends of rainfall in the West Harerge Zone, eastern Ethiopia. Method The coefficient of variation (CV) and standardized anomaly index (SAI) were used to analyze rainfall variability while Mann-Kendall (MK) trend test and Sen’s slop estimator were employed to examine the trend and magnitude of the rainfall changes, respectively. The association between rainfall and Pacific Ocean Sea Surface Temperature (SST) was also evaluated by Pearson correlation coefficient (r). Results The annual rainfall CV during 1983–2019 periods is between 12 and 19.36% while the seasonal rainfall CV extends from 15–28.49%, 24–35.58%, and 38–75.9% for average Kiremt (June–September), Belg (February–May), and Bega (October–January) seasons, respectively (1983–2019). On the monthly basis, the trends of rainfall decreased in all months except in July, October, and November. However, the trends were not statistically significant (α = 0.05), unlike in November. On a seasonal basis, the trends of mean Kiremt and Belg seasons rainfall decreased while it increased in Bega season although it is not statistically significant. Moreover, the annual rainfall showed a non-significant decreasing trend. The findings also revealed that the correlation between rainfall and Pacific Ocean SST was negative for Kiremt while positive for Belg and Bega seasons. Besides, annual rainfall and Pacific Ocean SST was negatively correlated. Conclusions High spatial and temporal rainfall variability was observed at the monthly, seasonal, and annual time scales. Seasonal rainfall has high inter-annual variability in the dry season (Bega) than other seasons. The trends in rainfall were decreased in most of the months. Besides, the trend of rainfall decreased in the annual, Belg and Kiremt season while increased in the Bega season. The study also indicated that the occurrence of droughts in the study area was associated with ENSO events like most other parts of Ethiopia and East Africa.


2013 ◽  
Vol 26 (8) ◽  
pp. 2482-2501 ◽  
Author(s):  
Jian Ma ◽  
Shang-Ping Xie

Abstract Precipitation change in response to global warming has profound impacts on environment for life but is highly uncertain. Effects of sea surface temperature (SST) warming on the response of rainfall and atmospheric overturning circulation are investigated using Coupled Model Intercomparison Project simulations. The SST warming is decomposed into a spatially uniform SST increase (SUSI) and deviations from it. The SST pattern effect is found to be important in explaining both the multimodel ensemble mean distribution and intermodel variability of rainfall change over tropical oceans. In the ensemble mean, the annual rainfall change follows a “warmer-get-wetter” pattern, increasing where the SST warming exceeds the tropical mean, and vice versa. Two SST patterns stand out both in the ensemble mean and intermodel variability: an equatorial peak anchoring a local precipitation increase and a meridional dipole mode with increased rainfall and weakened trade winds over the warmer hemisphere. These two modes of intermodel variability in SST account for one-third of intermodel spread in rainfall projection. The SST patterns can explain up to four-fifths of the intermodel variability in intensity changes of overturning circulations. SUSI causes both the Hadley and Walker circulations to slow down, as articulated by previous studies. The weakening of the Walker circulation is robust across models as the SST pattern effect is weak. The Hadley circulation change, by contrast, is significantly affected by SST warming patterns. As a result, near and south of the equator, the Hadley circulation strength change is weak in the multimodel ensemble mean and subject to large intermodel variability due to the differences in SST warming patterns.


Author(s):  
Esmond Gesever Ugbeji ◽  
Kingsley Chukwudi Okpala

Monthly rainfall data from meteorological stations in Nigeria are analyzed from 1951 to 1992, to establish their relationship with some Tropical climate systems. The climate systems include Tropical South Atlantic (TSA) sea surface temperature index, North Atlantic Ocean (NAO) atmospheric index, Tropical North Atlantic (TNA) sea surface temperature index, Central India Precipitation (CIP) and and Outgoing Longwave Radiation Anomaly (OLRA)).  The rainfall pattern was given in terms of the August break (quantified in terms of the monsoon break intensity (MBI) and annual rainfall anomaly index (RAI). Partial correlation analysis was carried out to determine the effect of the tropical climate systems on the linear association between them and the stations in Nigeria. Our results show that the rainfall anomalies although sometimes intense do not have predictable patterns. The tele connection between CIP and total rainfall in Nigeria suggests that the rainfall patterns in Nigeria is likely to be modulated by the Tropical Easterly Jet (TEJ) connecting rainfall pattern in Central India to that in Nigeria. The August break is observed to be highly variable and does not show a clear discernable pattern of variability. Its variability may be connected with multiple forcings from ocean and mesoscale circulations.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Sewwandhi Chandrasekara ◽  
Venkatraman Prasanna ◽  
Hyun-Han Kwon

In this study, the El Nino Southern Oscillation (ENSO) phase index is used for water management over the Kotmale reservoir in Sri Lanka. Daily rainfall data of 9 stations over the Kotmale catchment during 1960–2005 June-September (JJAS) season is investigated over the Kotmale catchment. The ENSO phases are identified based on the 0.5°C sea surface temperature (SST) anomaly over Nino 3 region. The study has brought out few stations showing increasing and a few decreasing seasonal rainfall trends for JJAS season, while there is no change in the annual rainfall for the catchment. Monthly and seasonal rainfall of all the selected stations showed negative correlation with the sea surface temperature (SST) over the Nino-3 region index during JJAS season with varying magnitudes. During the warm phase of ENSO, below average rainfall is prominent for JJAS season over many stations. The rainfall especially during early September showed a significant below average rainfall during the warm ENSO phase. The seasonal rainfall during neutral and cold ENSO phases does not experience similar significant changes as seen during warm ENSO phase. Inflow of the Kotmale reservoir shows decreasing trend for the period of 1960–2005 in the observation from all stations collectively.


Sign in / Sign up

Export Citation Format

Share Document